Tim x, y,z thuoc Z biết xy+1=z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn thừa số chung
Đơn giản biểu thức
Giải phương trình
Rút gọn thừa số chung
Giải phương trình
x+y=xy suy ra x+y-xy = 0
suy ra (x-xy)+y -1 = -1
suy ra x(1-y)-(1-y)=-1
suy ra (1-y)(x-1)=-1
suy ra (1-y) va (x-1) thuoc uoc kua -1
suy ra 1-y = 1 va x-1=-1
hoac 1-y=-1 va x-1 =1
suy ra y=0 va x bag 0
hoac y =2 va x=2
vay co 2 cap x,y thoa man la(0;0) va (2;2)
x+y=xy suy ra x+y-xy = 0
suy ra (x-xy)+y -1 = -1
suy ra x(1-y)-(1-y)=-1
suy ra (1-y)(x-1)=-1
suy ra (1-y) va (x-1) thuoc uoc kua -1
suy ra 1-y = 1 va x-1=-1
hoac 1-y=-1 va x-1 =1
suy ra y=0 va x bag 0
hoac y =2 va x=2
vay co 2 cap x,y thoa man la(0;0) va (2;2)
=>2 x+2y =xy
=>xy -2x-2y=0
=>x(y-2)-2(y-2)=4
=>(x-2)(y-2)=4
x-2 | 1 | 4 | -1 | -4 | 2 | -2 |
y-2 | 4 | 1 | -4 | -1 | 2 | -2 |
x | 3 | 6 | 1 | -2 | 4 | 0 |
y | 6 | 3 | 2 | 1 | 4 | 0 |
K NHA
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) Áp dụng t/ của dãy tỉ số = nhau, ta có:
x/5=y/3=z/4=x-z/5-4=7/1=7
Khi đó x/5=7=>x=35
y/3=7=>y=21
z/4=7=>z=28
Vậy _________
b) Mình sửa lại đề cho bạn nhé, bạn bị sai 1 chỗ: tim x,y thuộc z biết x/3=y/4=z/5 và 2x+3y+5z=86
Ta có: x/3=y/4=z/5 <=>2x/6=3y/12=5z/25
Áp dụng t/c của dãy tỉ số = nhau, ta có:
x/3=y/4=z/5=2x/6=3y/12=5z/25= (2x+3y+5z)/6+12+25= 86/43=2
Khi đó: x/3=2=>x=6
y/4=2=>y=8
z/5=2=>z= 10
Vậy _________
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Mà đề bài cho:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
\(\Rightarrow\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=2\)
\(\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\\x+y-3=2z\left(3\right)\\x+y+z=\dfrac{1}{2}\left(4\right)\end{matrix}\right.\)
Ta có:
\((*)\) \(x+y+z=\dfrac{1}{2}\Rightarrow y+z=\dfrac{1}{2}-x\) Thay \(\left(1\right)\) vào ta được:
\(\dfrac{1}{2}-x+1=2x\Rightarrow\dfrac{3}{2}=3x\Rightarrow x=\dfrac{1}{2}\)
\((*)\) \(x+y+z=\dfrac{1}{2}\Rightarrow x+z=\dfrac{1}{2}-y\) Thay \(\left(2\right)\) vào ta được:
\(\dfrac{1}{2}-y+2=2y\Rightarrow\dfrac{5}{2}=3y\Rightarrow y=\dfrac{5}{6}\)
\((*)\) \(x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+z=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{4}{3}+z=\dfrac{1}{2}\Leftrightarrow z=\dfrac{-5}{6}\)
Vậy: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)
Có vô số x,y,z thỏa mãn