Cho tứ giác lồi ABCD. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a) nếu biết diện tích ABM bằng 3cm và diện tích tam giác CDN bằng 4cm tính diện tích tứ giác ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia \(AM\) lấy \(I\) sao cho: \(AI=CE\)
Xét \(\Delta ADI\) và \(\Delta CDE\) có:
\(AD=CD\left(gt\right)\)
\(\widehat{DAI}=\widehat{DCE}=90^o\)
\(AI=CE\left(gt\right)\)
Vậy \(\Delta ADI=\Delta CDE\left(c.g.c\right)\)
\(\Leftrightarrow\widehat{IDA}=\widehat{EDC}\) ( 2 góc t/ứng )
\(\Leftrightarrow\widehat{AID}=\widehat{CED}\) ( 2 góc t/ứng )
\(\Leftrightarrow\) \(\widehat{CED}=\widehat{ADE}\) mà 2 góc này ở vị trí so le trong ( do \(AD//BC\) )
\(\Rightarrow\widehat{AID}=\widehat{ADE}\left(1\right)\)
Ta có: \(\widehat{ADE}=\widehat{ADM}+\widehat{MDE}\left(2\right)\)
Vì \(\widehat{MDE}=\widehat{EDC}\)
\(\Rightarrow\widehat{MED}=\widehat{IDA}\left(3\right)\)
Từ \(\left(2\right);\left(3\right)\Rightarrow\widehat{ADE}=\widehat{ADM}+\widehat{IDA}=\widehat{IDM}\left(4\right)\)
Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{AID}=\widehat{IDM}\)
\(\Leftrightarrow\widehat{MID}=\widehat{IDM}\)
\(\Leftrightarrow\Delta IDM\) cân \(\left\{M\right\}\)
\(\Leftrightarrow DM=IM\)
Ta lại có: \(IM=AM+AI=AM+CE\)
\(\Rightarrow DM=AM+CE\)
a, Ta có: AE=EB , AH=HD
⇒ EH là đg TB của △ABD ⇒ EH//BD , EH=\(\dfrac{BD}{2}\)
C/m tương tự ta có: FG là đg TB của △BDC ⇒ FG//BD , FG=\(\dfrac{BD}{2}\)
⇒ EH//FG , EH=FG ⇒ tứ giác EFGH là hbh
b, SEFGH = S - (SAEH +
SEBF + SFCG + SHDG)
+