cho a>b>0 và \(2\left(a^2+b^2\right)=5ab\)
Tính giá trị của biểu thức \(A=\frac{3a-b}{2a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ giả thiết chuyển vế phân tích thành nhân tử ta đc (a-b)(2a-b)=0=>a=2b(do a>b>0)=.P=1
Từ \(2\left(a^2+b^2\right)=5ab\)\(\Rightarrow2a^2+2b^2-5ab=0\)
\(\Rightarrow2b^2-ab-4ab+2a^2=0\)
\(\Rightarrow b\left(2b-a\right)-2a\left(2b-a\right)=0\)
\(\Rightarrow\left(b-2a\right)\left(2b-a\right)=0\)
\(\Rightarrow\orbr{\begin{cases}b-2a=0\\2b-a=0\end{cases}}\Rightarrow\orbr{\begin{cases}b=2a\\a=2b\end{cases}}\Rightarrow\orbr{\begin{cases}a=\frac{b}{2}\\b=\frac{a}{2}\end{cases}}\)
Ta có
\(2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-ab-4ab+2b^2=0\)
\(\Leftrightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)
Vì a>b>0 nên 2a>b
\(\Rightarrow a=2b\)
Thay vào P ta có
\(P=\frac{2.2b+b}{3.2b-b}=\frac{5b}{5b}=1\)
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
chả lời câu này
Bài này theo mình nên chọn phương án phân tích ĐTTNT từ điều kiện đầu tiên!
2a² + 2b² = 5ab
<=> 2a² - 5ab + 2b² = 0
<=> 2a² - 4ab - ab + 2b² = 0
<=> 2a(a - 2b) - b(a - 2b) = 0
<=> (a - 2b)(2a - b) = 0
<=> [a = 2b
.......[ a = b/2 (Loại vì a > b)
Thay a = 2b vào biểu thức ta có:
. .2b + b . . .. 3b
------------ = ---------- = 3
. .2b - b . . . . b