Gọi A là tập hợp các số nguyên m. Tìm số phần tử của tập hợp A
-(1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20)<m/20≤ 3/20-(-3/4)+(-4/5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1/2.5 +1/5.8 +1/8.11+1/11.14+1/14.17+1/17.20
S=1/3.(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20)
S=1/3.(1/2-1/20)
S=1/3.(10/20-1/20)
S=1/3.9/20
S= 3/20
k nha
\(\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\)
\(\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
mk đầu tiên đó
A=...
<=>\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{1}{17.20}\right)\)
<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)
<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
<=>\(A=\frac{1}{6}-\frac{1}{60}< \frac{1}{6}< 1\)
M = 4/2.5 + 4/5.8 + 4/8.11 + 4/11.14 + 4/14.17 + 4/17.20
M= 4/3 . (1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20)
M= 4/3 . (1/2 - 1/20)
M= 4/3 . (10/20 - 1/20)
M= 4/3 . 9/20
M= 3/5
k nha
x.\(\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\right)=-1\frac{3}{5}\)
x.\(\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{1}{2}-\frac{1}{17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{17}{34}-\frac{2}{34}\right)=\frac{-8}{5}\)
x.\(\frac{15}{34}=\frac{-8}{5}\)
x\(=\frac{-8}{5}:\frac{15}{34}\)
x\(=\frac{-8}{5}.\frac{34}{15}\)
x\(=\frac{-272}{75}\)
Vậy x\(=\frac{-272}{75}\)
- A ở trên giữa các phân số là dấu " + " nha mấy bạn !
\(7\frac{x}{2.5}+7\frac{x}{5.8}+.....+7.\frac{x}{17.20}=\frac{21}{10}\)
\(7\left(\frac{x}{2.5}+\frac{x}{5.8}+...+\frac{x}{17.20}\right)=\frac{21}{10}\)
\(\frac{x}{2.5}+\frac{x}{5.8}+...+\frac{x}{17.20}=\frac{21}{70}\)
\(\frac{x.3}{2.5.3}+\frac{x.3}{5.8.3}+...+\frac{x.3}{17.20.3}=\frac{21}{70}\)
\(x.\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\right)=\frac{21}{70}\)
\(x.\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{21}{70}\)
\(x.\frac{1}{3}.\frac{9}{20}=\frac{21}{70}\)
=> \(x=2\)
\(x=\frac{7x}{2}\)\(-\frac{7x}{5}+\)\(\frac{7x}{5}\)\(-\frac{7x}{8}\)\(+\frac{7x}{8}\)\(-\frac{7x}{11}\)\(+\frac{7x}{11}\)\(-\frac{7x}{14}\)\(+\frac{7x}{14}\)\(-\frac{7x}{17}+\)\(\frac{7x}{17}\)\(-\frac{7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x}{2}\)\(-\frac{7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x.10}{20}\)\(+\frac{7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x.10+7x}{20}\)\(=\frac{21}{10}\)
\(x=\frac{7x.\left(10+2\right)}{20.2}\)\(=\frac{7x.12}{40}\)\(=\frac{21}{10}\)
\(=>\frac{7x.12:4}{40:4}=\)\(\frac{21}{10}\)
\(=>x=1\)