Độ dài ba cạnh của một tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao tương ứng của tam giác đó tỉ lệ với ba số nào.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi 3 canh tam giac la a,b,c va 3 chieu cao tuong ung la x,y,z
theo bai ra thi a/2=b/3=c/4=k ( k>0)
suy ra a=2k; b=3k; c=4k
lai co ax=by=cz= dien tich tam giac/2
thay vao rut gon k
2x=3y=4z
suy ra 2x/12=3y/12=4z/12
suy ra x/6=y/4=z/3
vay 3 duong cao ti le voi 6,4,3
gọi độ dài 3 cạnh của tam giác ấy là a,b,c và chúng lần lượt tỷ lệ với 3;5;7
theo đề ra ta có : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và a+b+c=150
áp dụng tính chất của dãy tỷ số bằng nhau :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+4}=\frac{150}{12}=\frac{25}{2}\)
thay số vào rồi tính ạ
Diện tích tam giác bằng 1/2 tích cạnh và chiều cao tương ứng.
Vậy chiều cao sẽ có tỷ lệ 3/2/1
gọi độ dài mỗi cạnh là x,y,z
vì x,y,z thỉ lệ thuận 2;5;9
\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{9}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{9}=\frac{z-x}{9-2}=\frac{14}{7}=2\)
từ \(\frac{x}{2}=2\Rightarrow x=4\)
\(\frac{y}{5}=2\Rightarrow y=10\)
\(\frac{z}{9}=2\Rightarrow z=18\)
vậy x = 4; y = 10; z = 18.
Gọi độ dài 3 cạnh của tam giác đó lần lượt là a,b,c (m) (c>b>a>0)
Theo bài ra ta có:
a:b:c=2:5:9⇒a2=b5=c9a:b:c=2:5:9⇒a2=b5=c9
c−a=14c−a=14. Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a2=b5=c9=c−a9−2=147=2a2=b5=c9=c−a9−2=147=2
⇒⎧⎩⎨⎪⎪a2=2⇒a=2⋅2=4b5=2⇒b=2⋅5=10c9=2⇒c=2⋅9=18⇒{a2=2⇒a=2⋅2=4b5=2⇒b=2⋅5=10c9=2⇒c=2⋅9=18 (thỏa mãn)
Vậy độ dài 3 cạnh của tam giác đó lần lượt là 4m; 10m; 18m
Gọi độ dài 3 cạnh là a,b,c; 3 chiều cao tương ứng là x,y,z .Diện tích là S
Ta có :\(a=\frac{2S}{x};b=\frac{2S}{y};c=\frac{2S}{z}\)
Mà \(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
\(\Rightarrow\frac{2S}{4x}=\frac{2S}{5y}=\frac{2S}{6z}\)
\(\Rightarrow4x=5y=6z\)
\(\Rightarrow\frac{4x}{60}=\frac{5y}{60}=\frac{6z}{60}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{10}\)
Vậy 3 chiều cao tương ứng tỉ lệ với 15, 12, 10
Bạn ui
Đồng ý kết bạn với mh nha