So sánh
\(\frac{1006}{1007}\)và \(\frac{2013}{2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(\frac{2012}{2013}=1-\frac{1}{2013}; \frac{2013}{2014}=1-\frac{1}{2014}\)
Mà \(\frac{1}{2013}>\frac{1}{2014}\Rightarrow 1-\frac{1}{2013}< 1-\frac{1}{2014}\Rightarrow \frac{2012}{2013}< \frac{2013}{2014}\)
b)
\(\frac{1006}{1007}=1-\frac{1}{1007}\)
\(\frac{2013}{2015}=1-\frac{2}{2015}>1-\frac{2}{2014}=1-\frac{1}{1007}\)
Do đó: \(\frac{2013}{2015}> \frac{1006}{1007}\)
a) Ta có:
\(\dfrac{2012}{2013}+\dfrac{1}{2013}=1\)
\(\dfrac{2013}{2014}+\dfrac{1}{2014}=1\)
Vì \(\dfrac{1}{2013}>\dfrac{1}{2014}\) nên \(\dfrac{2012}{2013}< \dfrac{2013}{2014}\)
b) Ta có:
\(\dfrac{1006}{1007}+\dfrac{1}{1007}=1\)
\(\dfrac{2013}{2015}+\dfrac{2}{2015}=1\)
Vì \(\dfrac{1}{1007}=\dfrac{2}{2014}>\dfrac{2}{2015}\)
nên \(\dfrac{1006}{1007}< \dfrac{2013}{2015}\)
c) ta có:
\(1-\dfrac{64}{73}=\dfrac{9}{73}=\dfrac{153}{1241}\)
\(1-\dfrac{45}{51}=\dfrac{2}{17}=\dfrac{146}{1241}\)
Vì \(\dfrac{153}{1241}>\dfrac{146}{1241}\) nên \(\dfrac{63}{73}>\dfrac{45}{51}\)
a) 2012/2013 và 2013/2014
1-2012/2013=1/2013
1-2013/2014=1/2014
Vì 1/2013> 1/2014 nên 2012/2013<2013/2014
b) 1006/1007 và 2013/2015
1-1006/1007=1/1007=2/2014
1-2013/2015=2/2015
Vì 2/2014>2/2015 nên 1006/1007<2013/2015
c) 64/73 và 45/51
1-64/73=9/73=18/146
1-45/51=2/17=18/153
Vì 18/146> 18/153 nên 64/73<45/51
a) Ta có: \(\frac{2012}{2013}+\frac{1}{2013}=1\)
\(\frac{2013}{2014}+\frac{1}{2014}=1\)
Vì \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2012}{2013}< \frac{2013}{2014}\)
Vậy: \(\frac{2012}{2013}< \frac{2013}{2014}\)
b) \(\frac{1006}{1007}+\frac{1}{1007}=1\)
\(\frac{2013}{2015}+\frac{2}{2015}=1\)
Mà \(\frac{1}{1007}=\frac{2}{2014}>\frac{2}{2015}\)
nên: \(\frac{1006}{1007}< \frac{2013}{2015}\)
Vậy:.......
Đề bài của bạn là: \(\frac{37^{38}+5}{37^{39+5}}\)hay\(\frac{37^{38}+5}{37^{39}+5}\)
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
Ta có :
\(1-\frac{1006}{1007}=\frac{1}{1007}=\frac{2}{2014}\)
\(1-\frac{2013}{2015}=\frac{2}{2015}\)
Ta thấy :
\(\frac{2}{2014}>\frac{2}{2015}\Rightarrow1-\frac{1006}{1007}< 1-\frac{2013}{2015}\)
Mà \(1=1\)
Vậy \(\frac{1006}{1007}< \frac{2013}{2015}\)
\(\frac{2006}{2007}< \frac{2013}{2015}\)