Cho 2 đa thức:
\(P\left(x\right)=1+x+x^2+x^3+x^4+...+x^{2009}+x^{2010}\)
\(Q\left(x\right)=1-x+x^2-x^3+x^4-...-x^{2009}+x^{2010}\)
Giá trị của biểu thức \(P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)\)có dạng biểu diễn số hữu tỉ là \(\frac{a}{b}\); \(a,b\in N\); \(a,b\)là 2 số nguyên tố cùng nhau.
Chứng minh \(a⋮5\)
Mọi người giúp mik nha ^_^
Ta có: \(P\left(x\right)+Q\left(x\right)=2\left(1+x^2+x^4+...+x^{2010}\right)\)
\(\Rightarrow P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)
Đặt \(K=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)
\(\Rightarrow\frac{1}{2^2}K=\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{2012}}\right)\)
\(\Rightarrow K-\frac{1}{2^2}K=1-\frac{1}{2^{2012}}\)
\(\Rightarrow\frac{3}{4}K=1-\frac{1}{2^{2012}}\)
\(\Rightarrow K=\frac{4}{3}-\frac{1}{3.2^{2010}}\)
Lúc đó \(P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(\frac{4}{3}-\frac{1}{3.2^{2010}}\right)=\frac{8}{3}-\frac{1}{3.2^{2009}}\)
\(=\frac{2^{2012}-1}{3.2^{2009}}\)
Ta thấy \(2^{2012}-1=2^{4.503}-1=\overline{...6}-1=\overline{...5}⋮5\)
Mà 3 . 22009 không chia hết cho 5 nên khi ta rút gọn \(\frac{2^{2012}-1}{3.2^{2009}}\)đến dạng tối giản thì a vẫn chia hết cho 5.
Vậy \(a⋮5\left(đpcm\right)\)