choa tam giac ABC can A ( goc A < 90 do ) cac duong cao BD ,CE . CHUNG MINH :
a) yam giac ABD = tam giac ACE
b) tam giac BEH = TAM GIAC CDH( H = BD * CE)
C) AH LA TIA FAN GIAC CUA GOC A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình đơn giản rồi nên em tự kẻ ra nhé!
a, Xét ΔABD và ΔACE có:
\(\widehat{AEC}\)=\(\widehat{ABD=90^o}\)(giả thiết)
AB=AC(2 cạnh bên Δ cân ABC)
\(\widehat{A}\) chung
=>ΔABD=ΔACE(g.c.g)(đpcm)
b, Vì AE=AD
và HE=HD
=>AH là đường trung trực của ED(đpcm)
c, Xét ΔDKC và ΔDBC có:
\(\widehat{BDC}\)=\(\widehat{KDC}\)=90o(gt)
BD=KD(gt)
DC là cạnh chung
=>ΔDKC=ΔDBC(c.g.c)
DBC=DKC(2 cạnh tương ứng) (1)
BH=CH
=>ΔHBC cân tại H
=>DBC=ECB(2 góc ở đáy Δ cân) (2)
Từ (1) và (2)=>ECB=DKC(đpcm)
Đây là mới làm theo đề trên câu hỏi thôi còn em xem lại đề nhé, hình như đề thiếu thì phải!
a, xét tam giác ABD và tam giác ACE có:
AB=AD(gt)
\(\widehat{A}\)chung
\(\Rightarrow\)tam giác ABD= tam giác ACE( CH-GN)
b,vì tam giác ABC cân tại A nên \(\widehat{B}\)=\(\widehat{C}\)mà \(\widehat{ABD}\)=\(\widehat{ACE}\)( theo câu a)
\(\Rightarrow\)\(\widehat{HBC}\)=\(\widehat{HCB}\)
\(\Rightarrow\)tam giác BHC cân tại H
c,vì tam giác BHC cân tại H nên HB=HC mà HC>HD
\(\Rightarrow\)HB>HD
câu d hình như sai đề rồi bn ơi
a)Xét tam giác ABD và tam giác ACE ( đều vuông ) ta có:
\(AB=AC\left(GT\right)\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABD=\Delta ACE\)( cạnh huyền góc nhọn )
b)Vì \(\Delta ABD=\Delta ACE\)( cạnh huyền góc nhọn )
\(\Rightarrow AD=AE\Rightarrow\Delta AED\) cân tại A
c)Xét tam giác AEH và tam giác ADH ( đều vuông ) ta có:
\(AE=AD\left(GT\right)\)
Cạnh AH chung
\(\Rightarrow\Delta AEH=\Delta ADH\)( Cạnh góc vuông cạnh huyền )
\(\Rightarrow\widehat{EAH}=\widehat{DAH}\)(cặp góc vuông tương ứng)
\(\Rightarrow\)AH là tia p/giác của tam giác ABC
Mà tam giác ABC lại cân
Nên AH cũng là đoạn thẳng trung tuyến, cũng là đoạn thẳng vuông góc ( còn gọi là đường trung trực)
a: Xét ΔABD vuông tại D vàΔACE vuông tại E có
góc A chung
Do đó: ΔABD đồng dạng với ΔACE
b: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc BED+góc BCD=180 độ
1.a) \(\Delta ABC\)cân tại A\(\Rightarrow AB=AC\).Mà \(AD=AC\Rightarrow AB=AD\)
Xét \(\Delta ABD\)có \(AB=AD\Rightarrow\Delta ABD\)cân tại A
b)Có \(\widehat{ABC}=\widehat{ACB}\left(1\right)\)( do \(\Delta ABC\)cân)
\(\widehat{ABD}=\widehat{ADB}\left(2\right)\)( do \(\Delta ABD\)cân )
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ADB}\)
\(\Rightarrow\widehat{DBC}=\widehat{ACB}+\widehat{ADB}\)hay \(\widehat{DBC}=\widehat{DCB}+\widehat{BDC}\left(dpcm\right)\)
2.
a)Nối A vs C
có\(OA=0C;AB=CD\Rightarrow OA+AB=OC+CD\)
hay \(OB=OD\).Xét \(\Delta OBD\)có \(OB=OD\Rightarrow\Delta OBD\)cân tại O
b) Xét \(\Delta OAD\)và \(\Delta OCB\)có:
\(OA=OB\left(gt\right)\)
\(\widehat{AOB}:chung\)
\(OB=OD\left(cmt\right)\)
\(\Rightarrow\Delta OAD=\Delta OCB\left(c.g.c\right)\Rightarrow AD=CB\left(dpcm\right)\)
c)Có \(\Delta OAD=\Delta OCB\Rightarrow\widehat{ADO}=\widehat{CBO}\)
Xét \(\Delta ACD\)và \(\Delta CBA\)có: \(AD=CD\)
\(\widehat{ADO}=\widehat{CBO}\)
\(CD=BA\)
\(\Rightarrow\Delta ACD=\Delta CBA\left(c.g.c\right)\Rightarrow\widehat{CAD}=\widehat{BCA}\Rightarrow\Delta IAC\)cân tại I
Làm tương tự bạn => tam giác IBD cân tại I ( tam giác ADB = tam giác CBD => Góc ADB= góc CBD)