K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

Hình đơn giản rồi nên em tự kẻ ra nhé!

a, Xét ΔABD và ΔACE có:

\(\widehat{AEC}\)=\(\widehat{ABD=90^o}\)(giả thiết)

AB=AC(2 cạnh bên Δ cân ABC)

\(\widehat{A}\) chung

=>ΔABD=ΔACE(g.c.g)(đpcm)

b, Vì AE=AD

và HE=HD

=>AH là đường trung trực của ED(đpcm)

c, Xét ΔDKC và ΔDBC có:

\(\widehat{BDC}\)=\(\widehat{KDC}\)=90o(gt)

BD=KD(gt)

DC là cạnh chung

=>ΔDKC=ΔDBC(c.g.c)

DBC=DKC(2 cạnh tương ứng) (1)

BH=CH

=>ΔHBC cân tại H

=>DBC=ECB(2 góc ở đáy Δ cân) (2)

Từ (1) và (2)=>ECB=DKC(đpcm)

Đây là mới làm theo đề trên câu hỏi thôi còn em xem lại đề nhé, hình như đề thiếu thì phải!

4 tháng 3 2019

a, xét tam giác ABD và tam giác ACE có:

                 AB=AD(gt)

                 \(\widehat{A}\)chung

\(\Rightarrow\)tam giác ABD= tam giác ACE( CH-GN)

b,vì tam giác ABC cân tại A nên \(\widehat{B}\)=\(\widehat{C}\)mà \(\widehat{ABD}\)=\(\widehat{ACE}\)( theo câu a)

\(\Rightarrow\)\(\widehat{HBC}\)=\(\widehat{HCB}\)

\(\Rightarrow\)tam giác BHC cân tại H

c,vì tam giác BHC cân tại H nên HB=HC mà HC>HD 

\(\Rightarrow\)HB>HD

câu d hình như sai đề rồi bn ơi

12 tháng 6 2017

A B C E D H

a)Xét tam giác ABD và tam giác ACE ( đều vuông ) ta có:

       \(AB=AC\left(GT\right)\)

       \(\widehat{A}\) chung

             \(\Rightarrow\Delta ABD=\Delta ACE\)( cạnh huyền góc nhọn )

b)Vì \(\Delta ABD=\Delta ACE\)( cạnh huyền góc nhọn )

            \(\Rightarrow AD=AE\Rightarrow\Delta AED\) cân tại A

c)Xét tam giác AEH và tam giác ADH ( đều vuông ) ta có:

       \(AE=AD\left(GT\right)\)

       Cạnh AH chung

              \(\Rightarrow\Delta AEH=\Delta ADH\)( Cạnh góc vuông cạnh huyền )

               \(\Rightarrow\widehat{EAH}=\widehat{DAH}\)(cặp góc vuông tương ứng)

       \(\Rightarrow\)AH là tia p/giác của tam giác ABC

                     Mà tam giác ABC lại cân

Nên AH cũng là đoạn thẳng trung tuyến, cũng là đoạn thẳng vuông góc ( còn gọi là đường trung trực)

     

a: Xét ΔABD vuông tại D vàΔACE vuông tại E có

góc A chung

Do đó: ΔABD đồng dạng với ΔACE

b: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ

nên BEDC là tứ giác nội tiếp

=>góc BED+góc BCD=180 độ

1.a) \(\Delta ABC\)cân tại A\(\Rightarrow AB=AC\).Mà \(AD=AC\Rightarrow AB=AD\)

Xét \(\Delta ABD\)có \(AB=AD\Rightarrow\Delta ABD\)cân tại A

b)Có \(\widehat{ABC}=\widehat{ACB}\left(1\right)\)( do \(\Delta ABC\)cân)

\(\widehat{ABD}=\widehat{ADB}\left(2\right)\)( do \(\Delta ABD\)cân )

Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ADB}\)

\(\Rightarrow\widehat{DBC}=\widehat{ACB}+\widehat{ADB}\)hay \(\widehat{DBC}=\widehat{DCB}+\widehat{BDC}\left(dpcm\right)\)

2.

a)Nối A vs C

\(OA=0C;AB=CD\Rightarrow OA+AB=OC+CD\)

hay \(OB=OD\).Xét \(\Delta OBD\)có \(OB=OD\Rightarrow\Delta OBD\)cân tại O

b) Xét \(\Delta OAD\)và \(\Delta OCB\)có:

\(OA=OB\left(gt\right)\)

\(\widehat{AOB}:chung\)

\(OB=OD\left(cmt\right)\)

\(\Rightarrow\Delta OAD=\Delta OCB\left(c.g.c\right)\Rightarrow AD=CB\left(dpcm\right)\)

c)Có \(\Delta OAD=\Delta OCB\Rightarrow\widehat{ADO}=\widehat{CBO}\) 

Xét \(\Delta ACD\)và \(\Delta CBA\)có: \(AD=CD\)

                                                    \(\widehat{ADO}=\widehat{CBO}\)

                                                  \(CD=BA\)

\(\Rightarrow\Delta ACD=\Delta CBA\left(c.g.c\right)\Rightarrow\widehat{CAD}=\widehat{BCA}\Rightarrow\Delta IAC\)cân tại I

Làm tương tự bạn => tam giác IBD cân tại I ( tam giác ADB = tam giác CBD => Góc ADB= góc CBD)

13 tháng 2 2019

ai biet lam bai nay thi giup minh nhanh len nhe minh dang can gap