Cho a, b thuộc n. Chứng minh rằng nếu 5a+3b và 13a+8b cũng chia hết cho 2012,, thì a,b cũng chia hết cho 2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=5a+3b B=13a+8b
vì a,b thuộc N và 5a+3b chia hết 2012
=>:13A= 13(5a+3b)=65a+39b chia hết cho 2012 (1) và 13a+8b chia hết 2012 => 5B=5(13a+8b)=65a+40b chia hết cho 2012 (2)
Từ (1) và (2) => [65a+40b - (65a + 39b)] chia hết 2012
<=> 65a+40b - 65a - 39b chia hết cho 2012
<=> b chia hết cho 12
=> 3b chia hết cho 2012 mà 5a +3b chia hết cho 2012
=> 5a chia hết cho 2012 mà UCLN(5,2012)=1
=> a chia hết cho 2012
Vậy a,b thuộc N 5a+3b và 13a+8b chia hết cho 2012 thì a và b cũng chia hết cho 2012
Các bạn xem mình làm có đúng ko ??
Ta có: 5a + 3b chia hết cho 2012 => 13(5a+3b) chia hết cho 2012
=> 65 a + 39b chia hết cho 2012 (1)
Lại có: 13a + 8b chia hết cho 2012 => 5(13a + 8b) chia hết cho 2012
=> 65 a + 40b chia hết cho 2012 (2)
Từ (1)(2) => (65a + 40b) – (65a+39b) chia hết cho 2012
=> b chia hết cho 2012
Tương tự => a chia hết cho 2012
Vậy a, b cũng chia hết cho 2012
bạn làm đúng rồi , Hùng ạ ; còn phần tiếp theo bạn cũng làm tương tự sẽ ra kết quả
ủng hộ nha
Lời giải:
$5a+3b\vdots 2012$
$13a+8b\vdots 2012$
$\Rightarrow 8(5a+3b) - 3(13a+8b)\vdots 2012$
$\Rightarrow a\vdots 2012$
Ta có đpcm.
b)
+) 5a + 3b chia hết cho 2012 => 8(5a + 3b) chia hết cho 2012 => 40a + 24b chia hết cho 2012
13a + 8b chia hết cho 2012 => 3(13a + 8b) chia hết cho 2012 => 39a + 24b chia hết cho 2012
=> 40a + 24b - (39a + 24b) chia hết cho 2012 => a chia hết cho 2012
+) 5a + 3b chia hết cho 2012 => 13(5a + 3b) chia hết cho 2012 => 65a + 39b chia hết cho 2012
13a + 8b chia hết cho 2012 => 5(13a + 8b) chia hết cho 2012 => 65a + 40b chia hết cho 2012
=> 65a + 40b - (65a + 39b) chia hết cho 2012 => b chia hết cho 2012
Vậy ...
c) Bạn vào mục câu hỏi tương tự nhé
EM xin lỗi cô vì em đã **** cho cô quá nhiều trong ngày nên bây giờ em ko li-ke dc:)) Em cảm ơn cô ạ=)