K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

\(A=\left(n+2010^{2011}\right)\left(n+2011\right)\)

=> \(A=\left(n+2010-2010+2010^{2011}\right)\left(n+2011\right)\)

=> \(A=\left[\left(n+2010\right)-\left(2010-2010^{2011}\right)\right]\left(n+2011\right)\)

=> \(A=\left(n+2010\right)\left(n+2011\right)-\left(2010-2010^{2011}\right)\left(n+2011\right)\)

Vì n là số tự nhiên nên (n+2010) và (n+2011) là 2 số tự nhiên  => (n+2010)(n+2011) chia hết cho 2 

( vì tích 2 số tự nhiên liên tiếp luôn chia hết cho 2) 

Mặt khác dễ thấy 2010-2010^11 có chữ số tận cùng là 0 nên chia hết cho 2 

=> \(A=\left(n+2010\right)\left(n+2011\right)-\left(2010-2010^{2011}\right)\left(n+2011\right)⋮2\) ( Với mọi n \(\in\)N )

14 tháng 2 2016

20102011 chẵn nên đặt là 2k

2011 lẻ nên đặt là 2q + 1

Ta có:

Đặt A = (n + 2k)(n + 2k + 1)

+ n lẻ => n + 2k + 1 chẵn => n + 2q + 1 chia hết cho 2 => A chia hết cho 2

+ n chẵn => n + 2k chẵn => n + 2k chia hết cho 2 => A chia hết cho 2

Vậy...

15 tháng 10 2015

a,

Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2

Khi chia một số cho 3 sẽ xảy ra 1 trong ba trường hợp sau:

a=3k hoạc a=3k+1 hoặc a=3k+2

* Nếu a=3k thì a sẽ chia hết cho 2.                                                                                   (1)

* Nếu a=3k+2 thì a+1=3k+2

                          a    =3k+3

Vì 3k chia hết cho 3

     3 chia hết cho 3

=> 3k+3 chia hết cho 3 hay a+1 chia hết cho 3                                                                                          (2)

* Nếu a=3k+1 thì a+2=3k+1

                          a   =3k+3

Vì 3k chia hết cho 3

     3 chia hết cho 3

=>  3k+3 chia hết cho 3 hay a+2 chia hết cho 3                                                                                         (3)

Từ (1),(2) và (3) =>trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

29 tháng 3 2019

Bài 1: Mình không biết làm.

Bài 2:

TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)

=> (n+20102011) chia hết cho 2.

Nên (n+20102011)(n+2011) chia hết cho 2

TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)

=> n + 2011 chia hết cho 2

Nên (n+20102011)(n+2011) chia hết cho 2

Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N

23 tháng 10 2019

2011 có tổng các chữ số là 2+0+1+1=4 \(⋮̸3\)=> 2011 không chia hết cho 3 => 2011n \(⋮̸3\)

Ta biết rằng 3 số liên tiếp luôn tồn tại ít nhất một số chia hết cho 3

xét 3 số  2011n ; 2011n +1; 2011n +2 là 3 số liên tiếp mà 2011n \(⋮̸3\)=> 1 trong 2 số còn lại phải chia hết cho 3 => (2011n +1)(2011n +2) \(⋮3\)với mọi n tự nhiên

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)


b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

ta có n có 3 dạng là :3k,3k+1,3k+2

Với n=3k ta có 3k(3k+1)(3k+5) chia hết cho 3

Với n=3k+1 ta có (3k+1)(3k+2)(3k+6)=3.(3k+1)(3k+2)(k+2) chia hết cho 3

Với n =3k+2 ta có (3k+2)(3k+3)(3k+7)=3.(3k+2)(k+1)(3k+7) chia hết cho 3

=> n(n+1)(n+5) chia hết cho 3 (dpcm)

31 tháng 12 2017

Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Vậy n.(n+1).(n+5) chia hết cho 3 với mọi n thuộc N

k mk nha

16 tháng 8 2016

1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3

2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2

+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2

=> n.(n + 5) luôn chia hết cho 2

3) A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2

=> A không chia hết cho 2

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5