Trên quãng đường AB dài 6km, một người đi xe đạp từ A đến B rồi quay trở lại A. Sau khi đi từ B được 1 giờ, người đó nghỉ 20 phút. Để thời gian đi từ B về A không nhiều hơn thời gian đi từ A đến B, người đó phải đi vận tốc tăng hơn trước 4km/h trên quãng đường còn lại. Hỏi vận tốc lúc đi có thể lf bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (km/h) là vận tốc của người đi xe đạp (x>0)
Thời gian từ A đến B: \(\frac{60}{x}\)giờ
Theo bài ra ta có phương trình \(1+\frac{20}{60}+\frac{60-x}{x+4}=\frac{60}{x}\)
\(\Leftrightarrow1\frac{1}{3}+\frac{60-x}{x+4}-\frac{60}{x}=0\)
<=> \(1\frac{1}{3}+\frac{\left(60-x\right)x-60\left(x+4\right)}{x\left(x+4\right)}=0\)
<=> \(\frac{-x^2-240}{x\left(x+4\right)}=\frac{-4}{3}\)
<=> \(3x^2+720=4x^2+16x\)
<=> \(x^2+16x-720=0\)
<=> (x-20)(x+36)=0 \(\Leftrightarrow\orbr{\begin{cases}x=20\\x=-36\left(loại\right)\end{cases}}\)
Vậy vận tốc người đó là 20km/h
Gọi vận tốc từ A đến B là x (km/h)(x>0)
Theo bài ta có: \(\dfrac{90}{x}+\dfrac{90}{x+9}+\dfrac{1}{2}=5\)
=> \(\dfrac{90\left(x+9\right)}{x\left(x+9\right)}+\dfrac{90x}{x\left(x+9\right)}=\dfrac{9}{2}\)
=> \(\dfrac{90x+810+90x}{x^2+9x}=\dfrac{9}{2}\)
=> \(\dfrac{180x+810}{x^2+9x}=\dfrac{9}{2}\)
=> \(360x+1620=9x^2+91x\)
=> \(9x^2-269x-1620=0\)
=> x = 36
hoặc x = -5 (loại)
Vậy vtoc xe máy là 36km/h
Tỉ số vận tốc đi và về là :
12 : 15 = \(\frac{4}{5}\)
Trên cùng 1 quãng đường tỉ số vận tốc tỉ lệ nghịch với tỉ số thời gian nên tỉ số thời gian lúc đi và về là \(\frac{5}{4}\)
Ta có sơ đồ :
Thời gian đi !------!------!------!------!------!
Thời gian về!------!------!------!------!
Thời gian đi là :
20 : ( 5 - 4 ) x 5 = 100 phút = \(\frac{5}{3}\)giờ
Quãng đường AB dài :
12 x \(\frac{5}{3}\)= 20 ( km )
Đáp số : 20 km
Đổi : 20 phút = \(\frac{1}{3}\)giờ
Trên cùng quãng đường , vận tốc tỉ lệ nghịch với thời gian .
Tỉ lệ thời gian đi từ A đến B và từ B về A là : \(\frac{15}{12}=\frac{5}{4}\)
Như vậy , nếu coi thời gian đi từ A đến B là 5 phần bằng nhau , thời gian từ B về A là 4 phần .
Hiệu số phần bằng nhau là : 5 - 4 = 1 (phần)
Thời gian đi quãng đường AB là : \(\frac{1}{3}\): 1 x 5 =\(\frac{5}{3}\) (phút)
Từ đó ta có quãng đường AB là : 12 x \(\frac{5}{3}\)= 20 (km)
trung bình cộng của tất cả các số có 2 chữ số mà các chữ số đó phải chia hết cho 6