Cho a và b là hai số nguyên không là bội của 3 nhưng có cùng số dư khi chia cho 3. chứng tỏ rằng số a b trừ 1 chia hết cho 3
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
4 tháng 6 2016
a,b \(\notin B\left(3\right)\)nhưng chia 3 có cùng số dư nên số dư là 1 hoặc 2 .Do đó, (a ; b) = (3x + 1 ; 3y + 1) ; (3x + 2 ; 3y + 2) (x,y \(\in Z\))
=> ab - 1 = (3x + 1)(3y + 1) = 9xy + 3x + 3y + 1 - 1 = 3.(3xy + x + y) chia hết cho 3
hoặc ab - 1 = (3x + 2)(3y + 2) - 1 = 9xy + 6x + 6y + 4 - 1 = 9xy + 6x + 6y + 3 = 3.(3xy + 2x + 2y + 1) chia hết cho 3
Vậy a,b nguyên khi chia 3 có cùng số dư khác 0 thì ab - 1 chia hết cho 3
MA
14 tháng 1 2018
2)
Nếu 3^n +1 là bội của 10 thì 3^n +1 có tận cùng là 0
=> 3n có tận cùng là 9
Mà : 3^n+4 +1 = 3^n . 3^4 = .....9 . 81 + 1 = .....9 +1 = ......0
hay 3^n+4 có tận cùng là 0 => 3^n+4 là bội của 10
Vậy 3^n+4 là bội của 10.
a,b \(\notin B(3)\)nhưng chia 3 có cùng số dư nên số dư là 1 hoặc 2 . Do đó ,\((a;b)=(3x+1;3y+1)\); \((3x+2;3y+2)\)
\((x,y\notin Z)\)
=> ab - 1 = \((3x+1)(3y+1)=9xy+3x+3y+1-1=3.(3xy+x+y)\)chia hết cho 3
hoặc ab - 1 = \((3x+2)(3y+2)-1=9xy+6x+6y+4-1=9xy+6x+6y+3=3.(3xy+2x+2y+1)\)chia hết cho 3
Vậy a,b nguyên khi chia 3 có cùng số dư khác 0 thì ab - 1 chia hết cho 3