K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

\(x^{2018}+2x^{2017}+3x^{2016}+...+2017x+2018\)

\(=1+2+3+...+2017+2018\)

\(=\frac{2018.\left(2018+1\right)}{2}=2037171\)

29 tháng 7 2018

2016 x 2018 < 2017 x 2017

hí hí

.

29 tháng 7 2018

\(4068288;4068289\)

VẬY \(2016\)NHÂN \(2018>\)\(2017\)NHÂN \(2017\)

2 tháng 4 2018

\(\left|3x-2018\right|+\left|x-2017\right|=\left|2x-1\right|\)

\(\Rightarrow\orbr{\begin{cases}3x-2018+x-2017=2x-1\\-\left(3x-2018\right)+\left[-\left(x-2017\right)\right]=2x-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4x-4035=2x-1\\\left(-3x-x\right)+\left(2018+2017\right)=2x-1\end{cases}}\)

Làm tiếp

TH2:

\(\left|3x-2018\right|+\left|x-2017\right|=\left|2x-1\right|\)

\(\Rightarrow\orbr{\begin{cases}3x-2018+x-2017=-2x+1\\-\left(3x-2018\right)+\left[-\left(x-2017\right)\right]=-2x+1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4x-4035=-2x+1\\\left(-3x-x\right)+\left(2018+2017\right)=-2x+1\end{cases}}\)

Tự tiếp tiếp nha bạn

Bài sau cũng tg tự vậy mà làm

26 tháng 5 2017

\(\left(x+1\right)^6+\left(y-1\right)^4=-z^2\)

\(\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^6\ge0\\\left(y-1\right)^4\ge0\\z^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2\ge0\)

Mà \(\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^6=0\\\left(y-1\right)^4=0\\z^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\\z=0\end{cases}}\)

Thay x = -1, y = 1, z = 0 vào P

\(\Rightarrow P=2018.\left(-1\right)^{2016}.1^{2017}-\left(0-1\right)^{2018}\)

\(=2018-1=2017\)

Vậy...