Giúp mik bài này với 5:30 chiều nay mik pải nộp đề rồi:
Cho B=5n+8/6n+7 (n thuộc z)
a) tìm n để B nguyên
b) phân số B có thể rút gọn cho số nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b - a = 18
=> b = a + 18
thay vào ta đc phân số : a/a + 18 = 5/7
=> 7a = 5a + 90
=> 2a = 90
=> a = 45
vậy ps cần tìm là 45/63
Tử số a là: \(18\div\left(7-5\right)\times5=45\)
Mẫu số b là: \(45+18=63\)
=> Vậy phân số đã cho là: \(\frac{45}{63}\)
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
ta có 4n + 5 = 20n + 25
5n + 4 = 20n + 16
suy ra ( 20n + 25 ) - ( 20n + 16 ) chia hết cho 5n + 4
suy ra 9 chia hết cho 5n + 4
vậy 5n + 4 thuộc ước của 9
5n+4 | -1 | 1 | -3 | 3 | -9 | 9 |
n | -1 | 1 | ||||
tm | ktm | ktm | ktm | ktm | tm |
vậy có 2TH TM
Để \(B\in Z\Rightarrow5n+8⋮6n+7\)
\(\Rightarrow6.\left(5n+8\right)⋮6n+7\)
\(\Rightarrow30n+48⋮6n+7\)
\(\Rightarrow5.\left(6n+7\right)+13⋮6n+7\)
\(\Rightarrow13⋮6n+7\Rightarrow6n+7\inƯ\left(13\right)=\pm1;\pm13\)
b,GỌI Ư CLN\(\left(5n+8;6n+7\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}5n+8⋮d\Rightarrow6.\left(5n+8\right)⋮d\Rightarrow30n+48⋮d\\6n+7⋮d\Rightarrow5.\left(6n+7\right)⋮d\Rightarrow30n+35⋮d\end{cases}}\)
\(\Rightarrow\left(30n+48\right)-\left(30n+35\right)⋮d\)
\(\Rightarrow13⋮d\Rightarrow d=1;-1;13;-13\)
\(+d=13\Rightarrow6n+7⋮13\Rightarrow2.\left(6n+7\right)⋮13\)
\(\Rightarrow12n+14⋮13\)
\(\Rightarrow\left(12n+n\right)+\left(14-n\right)⋮13\)
\(\Rightarrow13n+\left(14-n\right)⋮13\)
\(\Rightarrow14-n=13k\)
\(\Rightarrow n=14-13k\)
Vậy \(n=14-13k\)thì B rút gọn đc