K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Cách 1:

Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\) <=> \(\frac{a}{x}=\frac{-3b}{-3y}=\frac{5c}{5z}=\frac{a-3b+5c}{x-3y+5z}=4\)

=> \(B=\frac{a-3b+5c}{x-3y+5z}=4\)

Đáp số: B=4

Cách 2: Ta có: a/x=b/y=c/z=4 => a=4x. Tương tự: b=4y; c=4z

=> \(B=\frac{a-3b+5c}{x-3y+5z}=\frac{4x-3\left(4y\right)+5\left(4z\right)}{x-3y+5z}=\frac{4\left(x-3y+5z\right)}{x-3y+5z}=4\)

Đáp số: B=4

NV
5 tháng 1 2021

\(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{-2\left(-4k\right)-7k+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-5k}=-\dfrac{16}{5}\)

NV
9 tháng 1 2023

Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)

29 tháng 7 2018

Ta có: x3=y4=> x15=y20

          y5=z6=> y20=z24 Vậy x15=y20=z24

đặt x15=y20=z24=k => x=15k; y=20k; z=24k

Thay x=15k; y=20k ; z=24k vào Biểu thức M ta có:

M=2x+3y+4z3x+4y+5z=2.15k+3.20k+4.24k3.15k+4.20k+5.24k=k(30+60+96)k(45+80+120)=186245

4 tháng 12 2021

Ko biết thì đừng bình luận vô đây.

5 tháng 12 2021

cho dãy tỉ số bằng nhau: 3a+b+2c/2a+c=a+3b+c/2b=a+2b+2c/b+c. tính giá trị biểu thức (a+b)(b+c)(c+a)/abc, với các mẫu số khác 0. Cái này cũng khó, nếu sai thì mong bạn thông cảm! 

11 tháng 2 2022

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)

\(\Rightarrow x=-4k;y=-7k;z=3k\) (1)

Thay (1) vào A , ta được

\(A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2\left(-4k\right)-3\left(-7k\right)-6.3k}\)

\(\Rightarrow A=\dfrac{8k+\left(-7k\right)+15k}{-8k+21k+\left(-18k\right)}\)

\(\Rightarrow A=\dfrac{k[8+\left(-7\right)+15]}{k[-8+21+\left(-18\right)]}\)

\(\Rightarrow A=\dfrac{16k}{-5k}\)

\(\Rightarrow A=\dfrac{16}{5}\)

Vậy \(A=\dfrac{16}{5}\)