Cho Tam Giác vuông ABC (góc A=90 độ ) , đường cao AH . Biết BH =4cm , CH=9cm
a) Chứng minh :AB2=BH.BC
b)Tính AB , AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB∼ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(đpcm)
b) Ta có: BC=BH+HC(H nằm giữa B và C)
nên BC=4+9=13(cm)
Ta có: \(AB^2=BH\cdot BC\)(cmt)
\(\Leftrightarrow AB^2=4\cdot13\)
hay \(AB=2\sqrt{13}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=13^2-\left(2\sqrt{13}\right)^2=117\)
hay \(AC=3\sqrt{13}\left(cm\right)\)
a)
Trong tam giác ABC có :
\(AH^2=BH.CH=4.9=36\Rightarrow AH=6\left(cm\right)\)
Áp dụng Pitago trong tam giác AHB vuông tại H ta có :
\(AB^2=AH^2+BH^2=6^2+4^2=52=BH.BC=4\left(9+4\right)\)
(đpcm)
b)
\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-52}=3\sqrt{13}\)
a: Xét ΔAHC vuông tại H và ΔBHA vuông tại H có
góc HAC=góc HBA
=>ΔAHC đồng dạng với ΔBHA
b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2
=>AM*AB=AN*AC
b: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
a: \(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
BH=4^2/5=3,2cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: ΔBAC đồng dạng với ΔBHA
=>BA/BH=BC/BA
=>BA^2=BH*BC
a: \(CB=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
BH=4^2/5=3,2cm
CD là phân giác
=>AD/AC=DB/BC
=>AD/3=DB/5=(AD+DB)/(3+5)=4/8=0,5
=>AD=1,5cm
b: Xet ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: Xét ΔBAC vuông tại A có AH là đường cao
nên AB^2=BH*BC
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBA vuông tại C có CH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}CH^2=HA\cdot HB\\CA^2=HA\cdot AB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=6\left(cm\right)\\CA=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHA vuông tại H có HE là đường cao ứng với cạnh huyền CA, ta được:
\(CE\cdot CA=CH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHB vuông tại H có HF là đường cao ứng với cạnh huyền CB, ta được:
\(CF\cdot CB=CH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(CE\cdot CA=CF\cdot CB\)
hay \(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
Xét ΔCEF vuông tại C và ΔCBA vuông tại A có
\(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
Do đó: ΔCEF\(\sim\)ΔCBA
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
Bạn tự vẽ hình nhé
a) Xét Tg ABC và Tg HBA có:
Góc BAC = Góc AHB(=90độ)
Góc B chung
=> Tg ABC ~ Tg HBA(g.g)
=> AB/HB=BC/BA
=> AB^2=HB. BC
=> Đpcm
b) BC= BH+ HC= 4+9=13cm
Có AB^2= HB.BC (câu a)
=> AB^2= 4.13= 52
=> AB= căn 52(cm)
Có Tg ABC vuông tại A
=> AC^2= BC^2-AB^2= 13^2- 52=117
=> AC= căn 117 (cm)