cho x thuộc Z chứng minh rằng x^200+x^100+1 chia hết cho x^4+x^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét : số chính phương chia 3 dư 0 hoặc 1
+, Nếu x và y đều ko chia hết cho 3 => x^2 và y^2 đều chia 3 dư 1
=> x^2+y^2 chia 3 dư 2 ( ko t/m )
+, Nếu trong 2 số có 1 số chia hết cho 3 , 1 số ko chia hết cho 3
=> x^2+y^2 chia 3 dư 1 ( ko t/m )
Vậy để x^2+y^2 chia hết cho 3 thì x và y đều chia hết cho 3
Tk mk nha
Giả sử ay - bx chia hết cho x+y
Mà ax-by chia hết cho x+y
=>(ax-by)+(ay-bx) chia hết cho x+y
=> ax-by+ay-bx chia hết cho x+y
=> (ax+ay)-(bx+by) chia hết cho x+y
=> a(x+y)-b(x+y) chia hết cho x+y
=> (a-b)(x+y) chia hết cho x+y (đúng)
=> giả sử đúng
Vậy ay-bx chia hết cho x+y
Ta thấy \(x^{2002}+x^{2000}+1\) có dạng \(x^{3m+1}+x^{3n+1}+1\)
Ta sẽ đi chứng minh \(x^{3m+1}+x^{3n+1}+1⋮x^2+x+1\)
Thật vậy,ta có:
\(x^{3m+1}+x^{3n+2}+1\)
\(=x^{3m+1}-x+x^{3n+2}-x^2+x^2+x+1\)
\(=x\left(x^{3m}-1\right)-x^2\left(x^{3n}-1\right)+\left(x^2+x+1\right)\)
Mà \(x^{3m}-1⋮x^2+x+1;x^{3n}-1⋮x^2+x+1\) nên \(x^{3m+1}+x^{3n+2}+1⋮x^2+x+1\)
a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)
b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)
c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)
Ta có : \(x^2+2012x+2011^{2011}-1=0\)
\(\Leftrightarrow x^2+2012x+1006^2=2011^{2011}+1+1006^2\)
\(\Rightarrow\left(x+1006\right)^2=2011^{2011}+1+1006^2\)
Giả sử x là một số nguyên thì VT là một số chính phương.
Khi đó VP cũng là số chính phương.
Lại có 20112011 có tận cùng là chữ số 1, 10062 có tận cùng là chữ số 6 nên VP có tận cùng là chữ số 8.
Lại có không một số chính phương nào có tận cùng là chữ số 8 hay VP không là số chính phương.
Vậy giả sử sai hay không tồn tại số nguyên x thỏa mãn phương trình trên.
có x^200+x^100+1=x^100*(x^2+1)+1
x^4+x^2+1=x^2*(x^2+1)+1
mà x^100chia hết cho x^2
x^2+1chia hết cho x^2+1
1 chia hết cho1
suy ra x^100*(x^2+1)+1chia hết cho x^2*(x^2+1)+1 hay x^200+x^100+1 chia hết cho x^4+x^2+1