Chứng minh rằng: 1 . 3 . 5 . 7 .....99 = 51/2 . 52/2 . 53/2 . 54/2 ......100/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.3.5.7........99 = \(\frac{\left(1.3.5.7......99\right)\left(2.4.6......100\right)}{2.4.6......100}\)= \(\frac{1.2.3......99.100}{2^{50}\left(1.2.3.....50\right)}=\frac{51.52.53.......100}{2.2.2......2}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\)(ĐPCM)
50 số 2
Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)(đpcm)
Xét VT:
\(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
\(VT=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}=VP\)
=>đpcm
Ta xét vế trái:
\(vt=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(VT=VP\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\RightarrowĐPCM\)
51/2* 52/2* ....*100/2 = [ 51*53*55*..*99 ]*[52*54*56*...*100]/2^50
= [ 51*53*55*..*99 ]*[26*27*28*...*50]*2^25/2^50
= [ 51*53*55*..*99 ]*[27**29*...*49]*[26*28*30*..50)/2^25
tiếp tục phân tích 26*28*30*..50 / 2^25 sẽ suy ra kết quả
hok tốt