K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét : ( x-1 ).( x+1 )
= x^2 + x - x -1
= x^2 - 1
Có : x.(x^2 - 1)
= x.( x-1 ).( x+1 )
= ( x - 1 ).x.( x+1 )
Do x-1; x; x+1 là 2 số nguyên liên tiếp
=> ( x - 1 ).x.( x+1 ) chia hết cho 3
=> x.(x^2 - 1) chia hết cho 3
Vậy....

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

30 tháng 10 2016

\(n^4+2n^3-n^2-2n\)

\(=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Tích của 4 số nguyên liên tiếp chia hết cho 24

=> n4 + 2n3 - n2 - 2n chia hết cho 24.

30 tháng 10 2016

\(n^4+2n^3-n^2-2n=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n+2\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Trong \(4\) số tự nhiên liên tiếp có \(2\) số chẵn liên tiếp
Trong hai số chẵn liên tiếp có :
+) Một số chẵn chia hết cho \(2\)
+) Một số chẵn chia hết cho \(4\)

Nên tích \(2\) số chẵn liên tiếp chia hết cho \(8\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(8\)
Ta cũng có : Tích \(3\) số tự nhiên chia hết cho \(3\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)

Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(24\left(=8.3\right)\)

Hay \(n^4+2n^3-n^2-2n⋮24\forall n\in Z\)

 

 
31 tháng 10 2017

ta có:

n4 + 2n3 - n2 - 2n

= n4 - n3 + 3n3 - 3n2 + 2n2 - 2n

= (n4 - n3) + (3n3 - 3n2) + (2n2 - 2n)

= n3(n - 1) + 3n2(n - 1) + 2n(n - 1)

= (n3 + 3n2 + 2n)(n - 1)

= (n3 + n2 + 2n2 + 2n)(n - 1)

= [n2(n + 1) + 2n(n + 1)](n - 1)

= (n2 + 2n)(n + 1)(n - 1)

= (n - 1)n(n + 1)(n + 2)

Vì bốn số nguyên liên tiếp sẽ chia hết cho 24

=> (n - 1)n(n + 1)(n + 2) chia hết cho 24

Hay n4 + 2n3 - n2 - 2n chia hết cho 24

31 tháng 10 2017

dài quá man's :v

\(A=n^4+2n^3-n^2-2n=n\left(n^3+2n^2-n-2\right)=n\left[\left(n^3-n\right)+\left(2n^2-2\right)\right]\)

\(=n\left[n\left(n^2-1\right)+2\left(n^2-1\right)\right]=n\left(n^2-1\right)\left(n+2\right)=n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)

tích 4 số nguyên liên tiếp chia hết cho 24

<=> A \(⋮24\) --> đpcm

28 tháng 8 2017

ta có : \(\left(n+6\right)^2-\left(n-6\right)^2=n^2+12n+36-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36=24n⋮24\)

\(\Leftrightarrow24n\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)

\(\Leftrightarrow\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)

vậy \(\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\) (đpcm)

28 tháng 8 2017

\(\left(n+6\right)^2-\left(n-6\right)^2\\ =\left(n+6+n-6\right).\left[n+6-\left(n-6\right)\right]\\ =2n.\left(n+6-n+6\right)\\ =2n.12\\ =24n⋮24\)

Vậy ...

28 tháng 8 2017

Ta có :

\(\left(n+6\right)^2-\left(n-6\right)^2\)  = \(\left(n+6\right)\left(n+6\right)-\left(n-6\right)\left(n-6\right)\)

\(=n^2+6n+6n+36-\left(n^2-6n-6n+36\right)\)

\(=n^2+12n+36-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36\)

\(=12n+12n\)

\(12n+12n=12\left(n+n\right)=12.2.n=24.n\) và  \(12n+12n=n\left(12+12\right)=24n\)chắc chắn sẽ chia hết cho 24  (đpcm)

19 tháng 8 2019

Nguyễn Thị Thúy Ngân, bạn giải chi tiết quá. Cảm ơn nhìu nhe!