cmr với mọi n thuộc Z thì(n^2+n-1)^2-1chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
\(n^4+2n^3-n^2-2n\)
\(=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Tích của 4 số nguyên liên tiếp chia hết cho 24
=> n4 + 2n3 - n2 - 2n chia hết cho 24.
\(n^4+2n^3-n^2-2n=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n+2\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Trong \(4\) số tự nhiên liên tiếp có \(2\) số chẵn liên tiếp
Trong hai số chẵn liên tiếp có :
+) Một số chẵn chia hết cho \(2\)
+) Một số chẵn chia hết cho \(4\)
Nên tích \(2\) số chẵn liên tiếp chia hết cho \(8\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(8\)
Ta cũng có : Tích \(3\) số tự nhiên chia hết cho \(3\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(24\left(=8.3\right)\)
Hay \(n^4+2n^3-n^2-2n⋮24\forall n\in Z\)
ta có:
n4 + 2n3 - n2 - 2n
= n4 - n3 + 3n3 - 3n2 + 2n2 - 2n
= (n4 - n3) + (3n3 - 3n2) + (2n2 - 2n)
= n3(n - 1) + 3n2(n - 1) + 2n(n - 1)
= (n3 + 3n2 + 2n)(n - 1)
= (n3 + n2 + 2n2 + 2n)(n - 1)
= [n2(n + 1) + 2n(n + 1)](n - 1)
= (n2 + 2n)(n + 1)(n - 1)
= (n - 1)n(n + 1)(n + 2)
Vì bốn số nguyên liên tiếp sẽ chia hết cho 24
=> (n - 1)n(n + 1)(n + 2) chia hết cho 24
Hay n4 + 2n3 - n2 - 2n chia hết cho 24
dài quá man's :v
\(A=n^4+2n^3-n^2-2n=n\left(n^3+2n^2-n-2\right)=n\left[\left(n^3-n\right)+\left(2n^2-2\right)\right]\)
\(=n\left[n\left(n^2-1\right)+2\left(n^2-1\right)\right]=n\left(n^2-1\right)\left(n+2\right)=n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
vì tích 4 số nguyên liên tiếp chia hết cho 24
<=> A \(⋮24\) --> đpcm
ta có : \(\left(n+6\right)^2-\left(n-6\right)^2=n^2+12n+36-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36=24n⋮24\)
\(\Leftrightarrow24n\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)
\(\Leftrightarrow\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)
vậy \(\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\) (đpcm)
Ta có :
\(\left(n+6\right)^2-\left(n-6\right)^2\) = \(\left(n+6\right)\left(n+6\right)-\left(n-6\right)\left(n-6\right)\)
\(=n^2+6n+6n+36-\left(n^2-6n-6n+36\right)\)
\(=n^2+12n+36-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36\)
\(=12n+12n\)
\(12n+12n=12\left(n+n\right)=12.2.n=24.n\) và \(12n+12n=n\left(12+12\right)=24n\)chắc chắn sẽ chia hết cho 24 (đpcm)
Nguyễn Thị Thúy Ngân, bạn giải chi tiết quá. Cảm ơn nhìu nhe!
Xét : ( x-1 ).( x+1 )
= x^2 + x - x -1
= x^2 - 1
Có : x.(x^2 - 1)
= x.( x-1 ).( x+1 )
= ( x - 1 ).x.( x+1 )
Do x-1; x; x+1 là 2 số nguyên liên tiếp
=> ( x - 1 ).x.( x+1 ) chia hết cho 3
=> x.(x^2 - 1) chia hết cho 3
Vậy....