TÌm GTNN của biểu thức : C = I x + 2 I + I x - 4 I + 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\left|x-4\right|+\left|x-2020\right|=\left|x-4\right|+\left|2020-x\right|\ge x-4+2020-x=2016\)
Dấu "=" xảy ra <=> x - 4 \(\ge0\)
và 2020 - x \(\ge0\)
<=> \(x\ge4\) và \(x\le2020\)
\(\Leftrightarrow4\le x\le2020\)
Vậy A đạt GTNN là 2016 \(\Leftrightarrow4\le x\le2020\)
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Bài 2:
\(C=\frac{2019}{\sqrt{x}+3}\)
Vì C có tử = 2019 ko đổi
\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min
+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)
+Dấu ''='' xảy ra khi ......tự lm :))
\(\Rightarrow\)Mẫu đạt min = 3 khi x=...
\(\Rightarrow\)C max = ... khi x=....
BÀi 1:
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)
+Dấu ''='' xảy ra khi
\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)
\(\Leftrightarrow x=2019\)
+Vậy \(B_{min}=2\) khi \(x=2019\)
Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
có |x-2017|luôn\(\ge0\forall x\in Q\)
cũng có |-1|luôn\(\ge0\forall x\in Q\)
=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)
=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016
dấu''='' xảy ra <=>(x-2017)(1-x)=0
TH1:
=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)
TH2:
=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)
tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !
`|x-1|+2020|x-2|+|x-3|`
`=|x-1|+|3-x|+2020|x-2|`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x-1|+|3-x|>=|x-1+3-x|=2`
Mà `|x-2|>=0=>2020|x-2|>=0`
`=>|x-1|+2020|x-2|+|x-3|>=2`
Dấu "=" xảy ra khi $\begin{cases}(x-1)(3-x) \ge 0\\x-2=0\\\end{cases}$
`<=>` $\begin{cases}(x-1)(x-3) \le 0\\x=2\\\end{cases}$
`<=>` $\begin{cases}1 \le x \le 3\\x=2\\\end{cases}$
`<=>x=2`
A= 42 + (x - 3)2
vì (x-3)2\(\ge\)0 nên
A= 42 + (x - 3)2\(\ge\)42
vậy GTNN của A là 42 tại x-3=0
x=3
B= x2 - 8
vì x2\(\ge\)0
nên B=x2 - 8\(\ge\)-8
vậy GTNN của B là -8 tại x2=0
x=0
C= I x - 5 I - 4
vì |x-5|\(\ge\)0
nên C= I x - 5 I - 4\(\ge\)-4
vậy GTNN của C là -4 tại x-5=0
x=5
Vì 42>0 , (x-3)2 lớn hơn hoặc bằng 0
=> 42+(x-3)2 lớn hơn hoặc bằng 42
Vậy GTNN của A=42
`C=|x+2|+|x-4|+2020`
`=|x+2|+|4-x|+2020`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x+2|+|4-x|>=|x+2+4-x|=6`
`=>C>=2020+6=2026`
Dấu "=" xảy ra khi `(x+2)(4-x)>=0<=>(x+2)(x-4)<=0<=>-2<=x<=4`
:)))