K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

Bài 2: 

a) Ta có: \(\overline{1a3b}\) số này chia hết cho 2 và 5 nên: \(b=0\)  

Mà số này lại chia hết cho 3 nên: 

\(1+a+3+b=4+a+0=4+a\) ⋮ 3 

TH1: \(4+a=6\Rightarrow a=2\)

TH2: \(4+a=9\Rightarrow a=5\)

TH3: \(4+a=12\Rightarrow a=8\) 

Vậy: \(\left(a;b\right)=\left(2;0\right);\left(5;0\right);\left(8;0\right)\) 

b) Ta có: \(\overline{2a31b}\) chia hết cho 45 nên số đó phải chia hết cho 5 và 9 

Mà \(\overline{2a31b}\) chia hết cho 5 nên: \(b\in\left\{0;5\right\}\)

Lại chia hết cho 9 nên: \(2+a+3+1+b=6+a+b\) ⋮ 9

Với b = 0:

\(6+a+0=9\Rightarrow a=3\)

Với b = 5: 

\(6+a+5=18\Rightarrow a=7\)

Vậy: \(\left(a;b\right)=\left(3;0\right);\left(7;5\right)\)

10 tháng 11 2023

Bài 3:

a) \(13\cdot15\cdot17\cdot19+23\cdot26\)

\(=13\cdot\left(15\cdot17\cdot19+23\cdot2\right)\)

Nên tổng chia hết cho 13 tổng là hợp số không phải SNT 

b) \(17^{100}-34\)

\(=17\cdot\left(17^{99}-2\right)\)

Nên hiệu chia hết cho 17 hiệu là hợp số không phải SNT 

\(2000^{2001}⋮5\)

mà \(2001^{2002}⋮̸5\)

nên \(A⋮̸5\)

6 tháng 10 2018

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)....+\left(3^{97}+3^{98}+3^{99}\right)\)

\(A=3.\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)...+3^{97}.\left(1+3+3^2\right)\)

\(A=3.13+3^4.13+...+3^{97}.13\)

\(A=13.\left(3+3^4+..+3^{97}\right)⋮13\)

Vậy...

6 tháng 10 2018

\(A=3+3^2+3^3+...+3^{99}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)

\(A=3\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\)

\(A=3\cdot13+...+3^{97}\cdot13\)

\(A=13\cdot\left(3+...+3^{97}\right)⋮13\left(đpcm\right)\)

30 tháng 3 2021

Giả sử (4a+2b)⋮3(4a+2b)⋮3

⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3

⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)

=> Giả sử đúng

Vậy (4a+2b)⋮3

16 tháng 7 2016

không trả lời

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka

 việt nam nói là làm

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

10 tháng 9 2018

1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )

\(a,b\in N\Rightarrow10a+3b\in N\)

Do đó\(12.\left(10a+3b\right)⋮12\)

Vậy\(A⋮12\)

2)

a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3

\(6b⋮3\)\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)

b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)

nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)

c) Ta có \(12a⋮12\);\(36b⋮12\)

nên \(12a+36b⋮12\)

Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)

nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)

\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)\(A+B⋮C\)\(B⋮C\)\(\Rightarrow A⋮C\))

d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh

P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không

9 tháng 9 2018

12a chứ ko phải 120a đâu