1/ Cho \(A=\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}\)
Chứng minh rằng: \(A=\frac{1}{101}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\frac{ }{ }\right)\right]\)
2/ Tính \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\). Chứng minh \(A< 1\)
3/ Cho \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Chứng minh: \(\frac{1}{2}< A< 1\)
GIÚP MÌNH NHA, MÌNH ĐANG CẦN GẤP.MÌNH SẼ TICK AI NHANH NHẤT!!