K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

Tháng 7 mới bắt đầu bạn ơi

8 tháng 6 2021

ồ cảm ơn bạn nhaa

 

QT
Quoc Tran Anh Le
Giáo viên
6 tháng 5 2021

Ngoài ra chúng mình cũng cần tìm thêm nhà tài trợ phụ ngoài nhà tài trợ chính là hoc24.vn ^^ Ai có thể giới thiệu cho chúng mình nhỉ?

6 tháng 5 2021

đề xuất  với ad cho tổ chức cuộc thi thiết kế như cuộc thi thiết kế logo nhé =)))

24 tháng 6 2021

a) Theo phương tích ta có HB . HC = HJ . HT. (1)

Mặt khác do (BCHS) = -1 nên theo hệ thức Maclaurin ta có HB . HC = HM . HS. (2)

Từ (1), (2) suy ra HM . HS = HJ . HT, do đó tứ giác SJMT nội tiếp.

b) Theo hệ thức lượng ta có \(MO.MT=MB^2\).

Mặt khác theo hệ thức Newton, ta có \(MB^2=MH.MS\).

Do đó \(MO.MT=MH.MS\Rightarrow\dfrac{MO}{MS}=\dfrac{MH}{MT}\Rightarrow\Delta MOS\sim\Delta MHT\left(c.g.c\right)\).

Từ đó \(\widehat{MSO}=\widehat{MTH}\Rightarrow SO\perp TH\).

Lại có tứ giác SJMT nội tiếp nên \(\widehat{SJH}=90^o\). Suy ra S, J, O thẳng hàng.

JG cắt BC tại D'. AO cắt BC tại I.

Ta có \(\dfrac{D'B}{D'C}=\dfrac{D'B}{D'J}.\dfrac{D'J}{D'C}=\dfrac{BG}{CJ}.\dfrac{BJ}{CG}=\dfrac{BG}{CG}.\dfrac{BJ}{CJ}\).

Mặt khác do O, T là điểm chính giữa của (BOC) nên JT là phân giác của góc BJC, GO là phân giác của góc BGC. Suy ra \(\dfrac{BG}{CG}=\dfrac{BI}{CI};\dfrac{BJ}{CJ}=\dfrac{BH}{CH}\).

Do đó \(\dfrac{D'B}{D'C}=\dfrac{BG}{CG}.\dfrac{BJ}{CJ}=\dfrac{BI}{CI}.\dfrac{BH}{CH}\).

Lại có AH, AI đẳng giác trong tam giác ABC nên \(\dfrac{BI}{CI}.\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\Rightarrow\dfrac{D'B}{D'C}=\dfrac{AB^2}{AC^2}\)

\(\Rightarrow\) AD' là đường đối trung của tam giác ABC.

Mặt khác ta có kết quả quen thuộc AT là đường đối trung của tam giác ABC, do đó \(D'\equiv D\).

Vậy SO, TH, DG đồng quy tại J.

24 tháng 6 2021

Hình vẽ:

undefined

23 tháng 1 2021

Gõ lại lần cuối, không được nữa nghỉ chơi hoc24:v

Bất đẳng thức cần chứng minh tương đương với $$a^3b^2+b^3c^2+c^3a^2\geq abc(a^2+b^2+c^2)$$Ta có$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$= \displaystyle\LARGE{\sum} {{a^3}} \left( {{b^2} - 2bc + {c^2}} \right) -\displaystyle \LARGE{\sum} {{a^2}} ({b^3} - {c^3})$Mặt khác ta có đẳng thức sau

$${a^2}\left( {{b^3} - {c^3}} \right) + {b^2}\left( {{c^3} - {a^3}} \right) + {c^2}\left( {{a^3} - {b^3}} \right) = {a^2}{\left( {b - c} \right)^2} + {b^2}{\left( {c - a} \right)^2} + {c^2}{\left( {a - b} \right)^2}$$Từ đó dễ dàng thu được$$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$$$= {a^2}{\left( {b - c} \right)^2}\left( {a - b + c} \right) + {b^2}{\left( {c - a} \right)^2}\left( {b - c + a} \right) + {c^2}{(a - b)^2}\left( {c - a + b} \right)$$$$= {S_a}{\left( {b - c} \right)^2} + {S_b}{\left( {c - a} \right)^2} + {S_c}{\left( {a - b} \right)^2}$$Với $${S_a} = {a^2}\left( {a - b + c} \right)$$$${S_b} = {b^2}\left( {b - c + a} \right)$$$${S_c} = {c^2}\left( {c - a + b} \right)$$Do $a,$$b,$$c$ là độ dài ba cạnh tam giác nên rõ ràng $S_a,S_b,S_c$ không âm. Ta thu được điều hiển nhiên.

23 tháng 1 2021

Ủa sao lỗi hết, anh xóa luôn hai câu giúp em ạ.

27 tháng 1 2021

Xét hiệu hai vế bất đẳng thức đã cho ta được:

\(VT-VP={\dfrac { \left( a-b \right) ^{2}{c}^{2}}{ \left( b+c \right) \left( c +a \right) \left( a+b+c \right) }}+{\dfrac { \left( b-c \right) ^{2}{a }^{2}}{ \left( a+b \right) \left( c+a \right) \left( a+b+c \right) } }+{\dfrac { \left( ac-{b}^{2} \right) ^{2}}{ \left( a+b \right) \left( b+c \right) \left( a+b+c \right) }}\geqslant 0. \)

Đẳng thức xảy ra khi $a=b=c.$

27 tháng 1 2021

Cách khác. 

Quy đồng, ta cần chứng minh:

\(2\,{a}^{3}{c}^{2}+{a}^{2}{b}^{3}-3\,{a}^{2}{b}^{2}c-2\,{a}^{2}b{c}^{2} +2\,{a}^{2}{c}^{3}+a{b}^{4}-3\,a{b}^{2}{c}^{2}+{b}^{4}c+{b}^{3}{c}^{2}\geq 0\)

Sử dụng bất đẳng thức AM-GM, ta có:

\(3\,a{b}^{2}{c}^{2}\leq \dfrac{5}{4}{a}^{2}{c}^{3}+\dfrac{1}{2}\,a{b}^{4}+\dfrac{1}{4} \,{b}^{4}c+{b}^{3}{c}^{2},\\2\,{a}^{2}b{c}^{2}\leq {\dfrac {7\,{a}^{3}{c} ^{2}}{10}}+\dfrac{1}{5}{a}^{2}{b}^{3}+\dfrac{3}{4}{a}^{2}{c}^{3}+{\dfrac {7\,{b}^{4}c }{20}},\\3\,{a}^{2}{b}^{2}c\leq {\dfrac {13\,{a}^{3}{c}^{2}}{10}}+\dfrac{4}{5}{a }^{2}{b}^{3}+\dfrac{1}{2}a{b}^{4}+\dfrac{2}{5}{b}^{4}c \)

Xong :D

 

24 tháng 1 2021

[Toán.C35 _ 24.1.2021]

Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?

\(\Rightarrow0-1-13-61-253-1017\)

[Toán.C36 _ 24.1.2021]

Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196

\(\Rightarrow\text{32-12-136-176-186-196}\)

24 tháng 1 2021

[Toán.C36 _ 24.1.2021]

Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196

Câu này sai nhé !

Phài là : Điền số còn thiếu vào quy luật sau: 12 - 32 - 136 - 176 - ? - 196

Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>Cuộc thi Toán Tiếng Anh VEMC | FacebookCó câu hỏi hay? Gửi ngay chờ chi:[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu-------------------------------------------------------------------[Toán.C31 _ 24.1.2021]a) Cho 3a + 4b = 5. Chứng minh rằng: \(a^2+b^2\ge1\).b) Cho \(2a^2+3b^2=5.\) Chứng minh rằng: \(2a+3b\le5\).[Toán.C32 _ 24.1.2021]Với \(0 a\le b\le...
Đọc tiếp

Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Có câu hỏi hay? Gửi ngay chờ chi:

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C31 _ 24.1.2021]

a) Cho 3a + 4b = 5. Chứng minh rằng: \(a^2+b^2\ge1\).

b) Cho \(2a^2+3b^2=5.\) Chứng minh rằng: \(2a+3b\le5\).

[Toán.C32 _ 24.1.2021]

Với \(0< a\le b\le c\)\(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{3c}\ge3;\dfrac{1}{2b}+\dfrac{1}{3c}\ge2;\dfrac{1}{3c}\ge1.\)

Chứng minh rằng: \(a^2+b^2+c^2\le\dfrac{49}{36}\).

[Toán.C33 _ 24.1.2021]

Cho a,b,c > 0. Chứng minh rằng:

\(\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2}-\dfrac{1}{2}.\left(\dfrac{a^3+b^3+c^3}{abc}-\dfrac{a^2+b^2+c^2}{ab+bc+ca}\right)\le2.\)

[Toán.C34 _ 23.1.2021]

Cho a,b,c > 0. Chứng minh rằng:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}.\)

5
24 tháng 1 2021

Xí câu dễ trước

Câu 31.

a) Thay $b=\dfrac{5-3a}{4}$ vào và rút gọn thì cần chứng minh $(5a-3)^2\geqslant 0.$

b) Ta có: \(5^2=\left(2+3\right)\left(2a^2+3b^2\right)\ge\left(2a+3b\right)^2\Rightarrow2a+3b\le5\)

Đẳng thức xảy ra khi \(a=b=1.\)

24 tháng 1 2021

Bài 33.

Chuyển về pqr, cần chứng minh:

\({\dfrac { \left( {p}^{2}-3\,q \right) \left( {p}^{3}q-{p}^{2}r-2\,p{q} ^{2}+6\,qr \right) }{2qr \left( {p}^{2}-2\,q \right) }}\geqslant 0 \)

Đây là điều hiển nhiên nếu khai triển biểu thức \({p}^{3}q-{p}^{2}r-2\,p{q}^{2}+6\,qr\) ta sẽ được một đa thức với tất cả hệ số đều dương.

THÔNG BÁO GIỚI THIỆU VỀ TIỀN SỰ KIỆN CUỘC THI TOÁN TIẾNG ANH VEMC MÙA THỨ TƯ (2020)Xin chào mọi người! Cho phép mình tự giới thiệu mình là chủ thớt cuộc thi Toán Tiếng Anh mấy mùa đã qua =))) Hiện nay cuộc thi đã bước sang mùa thứ tư nên mình muốn làm một dự án đặc biệt cho năm này mà ai, bất cứ độ tuổi và ngành nghề nào, cũng có thể tham gia.Vậy nên đầu tiên mình đã tạo nên trang facebook của cuộc...
Đọc tiếp

THÔNG BÁO GIỚI THIỆU VỀ TIỀN SỰ KIỆN CUỘC THI TOÁN TIẾNG ANH VEMC MÙA THỨ TƯ (2020)

Xin chào mọi người! Cho phép mình tự giới thiệu mình là chủ thớt cuộc thi Toán Tiếng Anh mấy mùa đã qua =))) Hiện nay cuộc thi đã bước sang mùa thứ tư nên mình muốn làm một dự án đặc biệt cho năm này mà ai, bất cứ độ tuổi và ngành nghề nào, cũng có thể tham gia.Vậy nên đầu tiên mình đã tạo nên trang facebook của cuộc thi:

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Mong mọi người ủng hộ trang facebook này. Đừng quên like và follow page để cập nhật những thông tin mới nhất nhé!

Tiết lộ một chút: Năm nay dự kiến có gì thay đổi? Mùa thứ tư này sẽ bao gồm có tiền sự kiện, sự kiện chính và hậu sự kiện trải dài trong năm, cao điểm là mùa hè! Mong chờ chứ? Hãy theo dõi và ủng hộ cuộc thi nhé! P/s: Tiền sự kiện là sự kiện mà fan hâm mộ trinh thám chắc chắn sẽ hóng chờ đó!!!

14
28 tháng 12 2020

nghe vui thật đấy nhưng em không có fb :'((

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 12 2020

Ngoài đăng trên facebook anh cũng sẽ đăng trên hoc24 là chính. Em theo dõi những diễn biến tiếp theo của cuộc thi nha :>

2 tháng 2 2021

em like rùi sj

Bạn đã like Trang để nhận thông báo mới nhất về cuộc thi chưa?Cuộc thi Toán Tiếng Anh VEMC | FacebookCó câu hỏi hay? Gửi ngay chờ chi (mình đang thiếu câu hỏi...):[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu-------------------------------------------------------------------[Toán.C42 _ 1.2.2021]Trích VEMC, 2018: Jack Sparrow và Barbossa tìm được chiếc rương chứa 105 đồng xu bằng vàng Aztec. Cả hai đều muốn chiếm các...
Đọc tiếp

Bạn đã like Trang để nhận thông báo mới nhất về cuộc thi chưa?

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Có câu hỏi hay? Gửi ngay chờ chi (mình đang thiếu câu hỏi...):

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C42 _ 1.2.2021]

Trích VEMC, 2018: Jack Sparrow và Barbossa tìm được chiếc rương chứa 105 đồng xu bằng vàng Aztec. Cả hai đều muốn chiếm các đồng tiền vàng cho riêng mình. Jack nghĩ ra một trò chơi với luật chơi như sau: Mỗi người lần lượt phải lấy từ 5 đến 9 đồng vàng. Người lấy được đồng tiền vàng cuối cùng sẽ là người chiến thắng và nhận tất cả số đồng xu trong rương. Nếu số đồng tiền vàng còn lại trong rương nhỏ hơn 5 (và lớn hơn 0) thì cả hai hòa nhau. Jack là người chơi trước. Hỏi Jack phải lấy bao nhiêu đồng vàng để chắc chắn mình là người thắng cuộc? Chứng minh.

1
5 tháng 2 2021

câu này pro vãi