Bài 7.Cho tam giác ABC , BD và CE là 2 đường cao của tam giác ABC . DF và EG là 2 đường cao của tam giác ADE.
a)Chứng minh rằng Hai tam giác ADE và ABC đồng dạng.
b)FG//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ΔΔAGE và ΔΔADB vuông có ^A chung nên ΔAGE ΔADBΔAGE ΔADB
⇒AGAD=AEAB⇒AG.AB=AD.AE⇒AGAD=AEAB⇒AG.AB=AD.AE(1)
ΔΔAFD và ΔΔAEC vuông có ^A chung nênΔAFD ΔAECΔAFD ΔAEC
⇒AFAE=ADAC⇒AF.AC=AE.AD⇒AFAE=ADAC⇒AF.AC=AE.AD(2)
Từ (1) và (2) suy ra AD.AE = AB.AG = AC.AF (đpcm)
b) Ta đã chứng minh AB.AG = AC.AF (câu a)
⇒AGAC=AFAB⇒AGAC=AFAB
⇒FG//BC⇒FG//BC(Theo định lý Thales đảo)
Vậy FG // BC (đpcm)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD∼ΔACE(g-g)
b) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(g-g)
Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BH\cdot HD=CH\cdot HE\)(đpcm)
Bài 1:Xét \(\Delta\)ABC có M,N lần lượt là trung điểm của B,C => MN song song với BC(t/c đường trung bình)
MN=\(\frac{1}{2}\)BC=6(cm)
có phải đường trung bình đâu bạn , nó có là trung điểm đâu
4 với 6 và 6 với 9 mà