tính nhanh
\(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+.....+\frac{3}{87.90}\) số cuối là số 87.90 nha
các bn giúp m nha làm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 54/15.18 + 54/18.21 + .........+ 54/87.90
A = 54/3 . ( 1/15.18 + 1/18.21 + ........+ 1/87.90)
A = 54/3 . ( 1/15 - 1/18 + 1/18 -1/21 + ......+ 1/87 - 1/90)
A =54/3 . ( 1/15 -1/90)
A = 54/3 . 1/18 = 1
vậy A = 1
D=\(\frac{6}{15.18}\)+\(\frac{6}{18.21}\)+...+\(\frac{6}{87.90}\)
D=2.\(\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
D=2.\(\frac{1}{18}\)
D=\(\frac{1}{9}\)
Vậy D=\(^{\frac{1}{9}}\)
\(D=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(D=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(D=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(D=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(D=2.\left(\frac{6}{90}-\frac{1}{90}\right)\)
\(D=2.\frac{1}{18}\)
\(D=\frac{1}{9}\)
\(M=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+.....+\frac{6}{87.90}\)
\(\Rightarrow M=6\left(\frac{1}{15.18}+\frac{1}{18.21}+\frac{1}{21.24}+....+\frac{1}{87.90}\right)\)
\(\Rightarrow M=6\left[\frac{1}{3}\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+.....+\frac{1}{87}-\frac{1}{90}\right)\right]\)
\(\Rightarrow M=6\left[\frac{1}{3}\left(\frac{1}{15}-\frac{1}{90}\right)\right]\Rightarrow M=6\left(\frac{1}{3}.\frac{1}{18}\right)\Rightarrow M=6.\frac{1}{54}\Rightarrow M=\frac{1}{9}\)
Ta có: \(\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(=2\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(=2\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(=2\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(=2\cdot\frac{1}{18}=\frac{1}{9}\)
\(\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+.......+\frac{6}{87.90}\)
\(=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+.......+\frac{1}{87}-\frac{1}{90}\right)\)
\(=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(=2.\frac{1}{18}\)
\(=\frac{1}{9}\)
Ta có: \(A=\frac{1}{15.18}+\frac{1}{18.21}+...+\frac{1}{87.90}\)
\(=\frac{1}{3}(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90})\)
\(=\frac{1}{3}(\frac{1}{15}-\frac{1}{90})\)
\(=\frac{1}{3}(\frac{6}{90}-\frac{1}{90})\)
\(=\frac{1}{3}.\frac{5}{90}\)
\(=\frac{1}{54}\)
Ta có: 1= \(\frac{54}{54}\)
Suy ra A < 1 (đpcm)
3A=3*(1/15*18+1/18*21+...+1/87*90)
3A=3/15*18+3/18*21+...+3/87*90
3A=1/15-1/18+1/18-1/21+...+1/87-1/90
3A=1/15-1/90
3A=1/18
A=1/18 chia3
A=1/54
vì 1/54<1 nên A<1
Ta có : \(\frac{1}{15.18}+\frac{1}{18.21}+\frac{1}{21.24}+...+\frac{1}{87.90}\)
= \(\frac{1}{3}\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
= \(\frac{1}{3}\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)
= \(\frac{1}{3}\left(\frac{1}{15}-\frac{1}{90}\right)\)
= \(\frac{1}{3}.\frac{1}{18}\)
= \(\frac{1}{54}\)
\(\frac{1}{15.18}+\frac{1}{18.21}+....+\frac{1}{87.90}\)
\(=\frac{1}{3}.\left(\frac{1}{15}-\frac{1}{90}\right)=\frac{1}{54}\)
A = 6/3 . ( 1/15.18 + 1/18.21 + 1/21/24 + . . . + 1/87.90 )
A = 6/3 . ( 1/15 - 1/18 + 1/18 - 1/21 + 1/21 - 1/24 + . . . + 1/87 - 1/90 )
A = 2 . ( 1/15 - 1/90 )
A = 2. 5/90
A = 10/90 = 1/9
\(\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{84.87}+\frac{6}{87.90}\)
\(=\frac{6}{3}\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{84.87}+\frac{3}{87.90}\right)\)
\(=2\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{84}-\frac{1}{87}+\frac{1}{87}-\frac{1}{90}\right)\)
\(=2\left(\frac{1}{15}-\frac{1}{90}\right)=2\left(\frac{6-1}{90}\right)=2\times\frac{1}{18}=\frac{1}{9}\)
\(\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(\rightarrow\frac{6}{3}.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
\(\rightarrow2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(\rightarrow2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(\rightarrow\frac{1}{9}\)
\(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\)
\(=\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{84}-\frac{1}{87}+\frac{1}{87}-\frac{1}{90}\)
\(=\frac{1}{15}-\frac{1}{90}\)
\(=\frac{6}{90}-\frac{1}{90}\)
\(=\frac{5}{90}\)
\(=\frac{1}{18}\)
1/15-1/18+1/18-1/21+1/21-1/24+....+1/87-1/90
=1/15-1/90
=6/90-1/90
=5/90
=1/16