K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

c: Ta có: ΔABH=ΔACK

nên AH=AK

d: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có 

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

mà \(\widehat{HBM}=\widehat{OBC}\)

và \(\widehat{KCN}=\widehat{OCB}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

28 tháng 1 2022

a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\) 

Xét △ABM và △ACN có:

\(AB=AC\) ( Vì △ABC cân)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

Do đó : △ABC=△ACN\(\left(c.g.c\right)\)

b)Xét △vuoongAHB và △vuoongAKC có

AB=AC(vì △ABC cân)

\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)

⇒△AHB=△AKC ( cạnh huyền góc nhọn)

⇒AH=AK

 

 

28 tháng 1 2022

a, Ta có : ^ABM = ^MBC - ^ABC (1) 

^ACN = ^NCB - ^ACB (2) 

Từ (1) ; (2) suy ra ^ABM = ^ACN 

Xét tam giác ABM và tam giác ANC có : 

^ABM = ^ANC ( cmt ) 

AB = AC ( gt )

MB = NC (gt)

Vậy tam giác ABM = tam  giác ACN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

Xét tam giác AMN có : AN = AM 

Vậy tam giác AMN là tam giác cân tại A 

=> ^M = ^N (3) 

b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4) 

^ACK = ^ANC ( cùng phụ ^KCN ) (5) 

Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK 

=> ^HBM = ^KCN 

Xét tam giác AHB và tam giác AKC ta có : 

^ABH = ^ACK ( cmt )

AB = AC 

^AHB = ^AKC = 900

Vậy tam giác AHB = tam giác AKC ( ch - gn )

=> AH = AK ( 2 cạnh tương ứng )

c, Ta có : ^HBM = ^OBC ( đối đỉnh ) 

^KCN = ^BCO ( đối đỉnh ) 

mà ^HBM = ^KCN (cmt) 

Xét tam giác OBC có : 

^OBC = ^OCB vậy tam giác OBC cân tại O

 

25 tháng 1 2017

A B C D H K M N O

tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB

ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)

suy ra AM = AN ( 2 cạnh tương ứng )

tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân

b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )

dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )

suy ra BA = Ck ( 2 cạnh tương ứng ) 

c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân

\(\Delta AHK\)và  \(\Delta AMN\) có chung đỉnh

mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)

mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN

d) kéo dài HB và CK cắt nhau tại O

nối AO

xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)

AO là cạnh huyền chung

AH = AK

do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )

e) xét tam giác \(BAD\)và \(\Delta CAD\)

BA = CA ( tam giác ABC cân tại A )

DA = DC (gt)

AD là canh chung 

do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)

phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã

26 tháng 1 2017

tiếp nhé

suy ra góc BAD = góc CAD ( 2 góc tương ứng )

vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)

ta có BH = CK ( cmt)

và HO = KO (cmt)

suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )

hay BO = OC

xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)

do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)

suy ra góc BAO = góc CAO ( 2 góc tương ứng )

vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)

từ (1) và (2) suy ra A;D;O thẳng hàng 

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔBEM vuông tại E và ΔCFN vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó:ΔBEM=ΔCFN

c: Ta có: ΔBEM=ΔCFN

nên \(\widehat{BEM}=\widehat{CFN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

=>OB=OC

hay O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Ta có: ΔAMN cân tại A

mà AO là đường cao

nên AO là phân giác của góc MAN

21 tháng 4 2020

a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)

mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN

=> Tam giác AMN cân tại A

b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)

<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)

=> AH=CK

Này là môn Văn em đừng đăng đề toán nhé!

17 tháng 2 2021

chính xác 

8 tháng 1 2022

( Hình bạn tự vẽ giúp mình nha )

a) Xét △ ABM và △ ACN có

          AB = AC

          BM = CN

         \(\widehat{ABM}=\widehat{ACN}\)

⇒ △ ABM = △ ACN ( c - g - c )

⇒ AM = AN ( hai cạnh tương ứng )

Suy ra: △ AMN cân tại A

b) Xét tam giác vuông BME và tam giác vuông CNF ta có:

         MB = CN

         \(\widehat{EMB}=\widehat{CNF}\)   ( vì △ AMN cân tại A )

⇒ △ BME = △ CNF ( ch - gn )

c) Vì △ BME = △ CNF ( cmt )

⇒ ME = CF

⇒ EA = FA  

Xét tam giác vuông EAO và tam giác vuông AOF ta có:

          AE = FA

          AO cạnh chung

⇒ △ EOA = △ FOA ( ch - cgv )

⇒ \(\widehat{EAO}=\widehat{FAO}\)

Hay AO là tia phân giác góc \(\widehat{MAN}\)

d) Ta có:     EO ⊥ AM

                   MH ⊥ AM

⇒ EO // MH

Lại có:    \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )

Từ đó suy ra:    A, O, H thẳng hàng

29 tháng 12 2023

a: Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góckề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

=>AM=AN

=>ΔAMN cân tại A

b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có

BM=CN

\(\widehat{BME}=\widehat{CNF}\)(ΔABM=ΔACN)

Do đó: ΔBME=ΔCNF

c: Ta có: ΔBME=ΔCNF

=>ME=NF

Ta có: AE+EM=AM

AF+FN=AN

mà AM=AN và ME=NF

nên AE=AF

Xét ΔAEO vuông tại E và ΔAFO vuông tại F có

AO chung

AE=AF

Do đó: ΔAEO=ΔAFO

=>\(\widehat{EAO}=\widehat{FAO}\)

=>\(\widehat{MAO}=\widehat{NAO}\)

=>AO là phân giác của góc MAN

d: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

AM=AN

Do đó: ΔAMH=ΔANH

=>\(\widehat{MAH}=\widehat{NAH}\)

=>AH là phân giác của góc MAN

mà AO là phân giác của góc MAN

nên A,O,H thẳng hàng

a: Xét ΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

c: Ta có: ΔAHB=ΔAKC

nên AH=AK

21 tháng 1 2022

seo nói cj Lam như vậy

3 tháng 3 2021

Violympic toán 7

28 tháng 3 2021

â mây zing gút chọp