K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

nho hon 1

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

5 tháng 3 2016

Ta có:

\(\frac{1}{51}>\frac{1}{100}\)

\(\frac{1}{52}>\frac{1}{100}\)

...

\(\frac{1}{99}>\frac{1}{100}\)

\(\frac{1}{100}=\frac{1}{100}\)

=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)

Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)

=> S \(>\frac{1}{100}.50\)

=> S \(>\frac{1}{2}\)

Vậy S > 1/2.

14 tháng 3 2018

Ta có : 

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=50.\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow\)\(S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Chúc bạn học tốt ~

14 tháng 3 2018

\(S>\frac{1}{100}\cdot50=\frac{1}{2}\)

26 tháng 4 2018

ta có 1/51>1/100

        1/52>1/100

        ..................

        1/100=1/100

\(\Rightarrow\)S=1/51+1/52+...+1/100>(1/100+1/100+...+1/100)=1/100.50=1/2

\(\Rightarrow\)S>\(\frac{1}{2}\)

cái chỗ 1/100+1/100+...+1/100 có 50 số bạn nhá

chúc bạn học tốt~

1 tháng 5 2017

bang nhau

Giai:

A=1.3.5.7...97.99=\(\frac{\left(1.3.5...97.99\right).\left(2.4.6...100\right)}{2.4.6...100}\)

=\(\frac{1.2.3.4...99.100}{\left(1.2\right).\left(2.2\right)...\left(2.50\right)}\)

=\(\frac{\left(1.2.3...50\right).\left(51.52...99.100\right)}{\left(1.2.3...49.50\right).2^{50}}\)

=\(\frac{51.52...99.100}{2.2...2.2}\)

=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)

mà B=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)

Nên A=B

Vậy A=B

1 tháng 5 2017

\(1.3.5.7...97.99=\frac{100!}{2.4.6.8...100}\)

\(=\frac{1.2.3.4...100}{1.2.2.2.3.2...50.2}\)

\(=\frac{51.52.53...100}{2}\)

Vậy \(A=B\)

10 tháng 4 2016

xử lí C ta có C=51.52.53.....100/250

ta nhân cả tử và mẫu của C với 1.2.3.........50  thì dc

(1.2.3.4.5.6.........................50).(51.52..............100)

(1.2.3.4...............................50) (2.2...................2) có 50 thừa số 2

tử giữ nguyên xét mẫu ta có (1.2........50).(2.2.......2.2)= (1.2)(2.2)......(50.2)=2.4.6.8......100 vậy triệt tiêu tử cho mẫu thì ta dc c=1.3....97.99

tức C=D

3 tháng 8 2017

7X-8=713

Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)Hãy so sánh S và \(\frac{1}{2}\)Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)Bài 4: Cho tổng...
Đọc tiếp

Bài 1: Cho A= \(\frac{2011}{2012}\)\(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)

Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)

Hãy so sánh S và \(\frac{1}{2}\)

Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)

S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)

Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

Chứng tỏ rằng A>1

Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Bài 6: Chứng tỏ rằng

D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1

Bài 7: 

C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)

Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm

4
10 tháng 6 2016

sorry,quá dài

10 tháng 6 2016

Đề bài 7 có sai gì không bạn?