chứng minh rằng:
1/51+1/52+...+1/99+1/100>1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)= \(\left(1+\frac{1}{3}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)\)
\(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}=-\frac{1}{2}\)
51/2* 52/2* ....*100/2 = [ 51*53*55*..*99 ]*[52*54*56*...*100]/2^50
= [ 51*53*55*..*99 ]*[26*27*28*...*50]*2^25/2^50
= [ 51*53*55*..*99 ]*[27**29*...*49]*[26*28*30*..50)/2^25
tiếp tục phân tích 26*28*30*..50 / 2^25 sẽ suy ra kết quả
hok tốt
Ta có:
(1+1/3+1/5+...+1/99) - (1/2+1/4+1/6+...+1/100)
= (1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100...-2(1/2+1/4+1/6+...+1/100) (tức là ta tự cộng thêm vào dấu ngoặc đầu 1/2+1/4+1/6+...+1/100 thì phải trừ bớt ra 1/2+1/4+1/6+...+1/100 do đó ta ghép vào dấu ngoặc sau nên thêm vào số 2 đằng trước dấu ngoặc sau )
=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100...- (1+1/2+1/3+...+1/50) (ta nhân phân phối số 2 vào ngoặc sau làm các mẫu giảm 2 lần)
=1/51+1/52+1/53+...+1/100 (đpcm)
a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)
\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)
Vậy A > 1/2
b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Vậy B > 1/2
c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)
Vậy C > 1