Tính tổng sau:
S=1/1x2+1/2x3+1/3x4+.......+1/2017x2018
Làm nhanh nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1x2}+\frac{1}{1x3}+...+\frac{1}{999x1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
1/1x2+1/2x3+1/3x4+...+1/999x1000
=1-1/2+1/2-1/3+1/3-1/4+...+1/999-1/1000
=1-1/1000
=1000/1000-1/1000
=999/1000
=1-1/2+1/2-1/3+...+1/1981-1/1982
=1-1/1982
=1981/1982
Lời giải:
$\frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+....+\frac{1}{1981\times 1982}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+...+\frac{1982-1981}{1981\times 1982}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1981}-\frac{1}{1982}$
$=1-\frac{1}{1982}=\frac{1981}{1982}$
vì 1/1*2=1-1/2
1/2*3=1/2-1/3
.....................
1/2014*2015=1/2014-1/2015
=1-1/2+1/2-1/3+1/3-....+1/2014-1/2015
=1-1/2015
=2014/2115
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{2014x2015}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
A = \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+...+ \(\dfrac{1}{2021\times2022}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+...+ \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\)
A = 1 - \(\dfrac{1}{2022}\)
A = \(\dfrac{2021}{2022}\)
1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7
=1/1-1/2+1/2-1/3+...-1/7
=1+(1/2-1/2+1/3-1/3+...+1/6-1/6)-1/7
=1 +0+0+...-1/7
=1-1/7
=6/7
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\\ =1-\dfrac{1}{2010}=\dfrac{2009}{2010}\)
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\)\(1-\frac{1}{2014}\)
\(=\)\(\frac{2014}{2014}-\frac{1}{2014}\)
\(=\)\(\frac{2013}{2014}\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}=\frac{2013}{2014}\)
Dấu \(.\) là dấu nhân nhé
Chúc bạn học tốt ~
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2013\times2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}\)
\(=\frac{2013}{2014}\)
CHÚC BN HỌC TỐT!!!!!
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(S=1-\frac{1}{2018}\)
\(S=\frac{2018}{2018}-\frac{1}{2018}\)
\(S=\frac{2017}{2018}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}.\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}=\frac{2017}{2018}\)