Giả sử a và b là số nguyên dương và bốn số a + b, a − b, × b, ÷ b là khác nhau và tất cả đều là số nguyên dương. Giá trị nhỏ nhất có thể của a + b là gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,b\)nguyên dương nên hiển nhiên \(a+b,a\times b\)nguyên dương. \(a-b\)nguyên dương khi \(a>b\).
\(a\times b,a\div b\)có giá trị khác nhau nên \(b\ne1\).
Với \(b=2\): xét các giá trị của \(a\)để \(a\div b\)nguyên dương.
- \(a=2\): \(a-b=0\)không thỏa mãn.
- \(a=4\): \(a-b=a\div b=2\)không thỏa mãn.
- \(a=6\): thỏa mãn. Khi đó \(a+b=8\).
Với \(b\ge3\)thì để thỏa mãn thì \(a\ge2b\)khi đó \(a+b\ge3b\ge9>8\).
Vậy giá trị nhỏ nhất của \(a+b\)là \(8\).
Lời giải:
$1440=2^5.3^2.5$
Để $k=n!\vdots 1440$ thì $n!\vdots 2^5$; $n!\vdots 3^2; n!\vdots 5$
Để $n!\vdots 3^2; 5$ thì $n\geq 6(1)$
Để $n!\vdots 2^5$. Để ý $2=2^1, 4=2^2, 6=2.3, 8=2^3$. Để $n!\vdots 2^5$ thì $n\geq 8(2)$
Từ $(1); (2)$ suy ra $n\geq 8$. Giá tri nhỏ nhất của $n$ có thể là $8$
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)
Để a+b nhỏ nhất thì a,b nhỏ nhất
Do \(a-b\ne0\) nên \(a\ne b\), \(ab\ne\frac{a}{b}\) nên \(b\ne1\)\(\Rightarrow\)\(a\ne1\), \(a-b>0\)\(\Rightarrow\)\(a>b\)
\(\frac{a}{b}\inℕ^∗\)\(\Rightarrow\)\(a⋮b\)
Từ những điều kiện trên => a nhỏ nhất khi a=2b
loại a=4 và b=2 vì ko thoả mãn \(a-b\ne\frac{a}{b}\)
=> a,b nhỏ nhất khi a=6 và b=3 => a+b=9 thoả mãn đk