cho tam giác ABC cân tại A, lấy điểm H là trung điểm của đoạn BC.
a) CM tam giác ABH = tam giác ACH.
b) tia phân giác góc ABC cắt đoạn AH tại M CM :góc ABM = góc ACM và tam giác MBC cân
c)đường thằng đi qua A và song song với BC cắt tia BM tại N.CM :AB=AN .
d)CM MC vuông góc với CN
a/ Xét T/g ABH và T/g ACH ta có :
+ AB = AC ( T/g ABC cân tại A )
+ BH = CH ( H là trung điểm BC )
+ Góc ABH = ACH ( T/g ABC cân tại A )
=> T/g ABH = T/g ACH (C.g.c)
b/Xét T/g ABM và T/g ACM ta có
+ Ab = Ac ( T/g ABC cân tại A )
+ AM chung
+ BAM = CAM ( T/g ABH = T/g ACH )
=> T/g ABM = T/g ACM (C.g.c)
- Ta có :
BM = CM ( T/g ABM = T/g ACM)
=> T/g MBC cân tại M