K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

a/ Xét T/g ABH và T/g ACH ta có :
+ AB = AC ( T/g ABC cân tại A )

+ BH = CH ( H là trung điểm BC )

+ Góc ABH = ACH ( T/g ABC cân tại A ) 

=> T/g ABH = T/g ACH (C.g.c)

b/Xét T/g ABM và T/g ACM ta có 
+ Ab = Ac ( T/g ABC cân tại A )
+ AM chung 
+ BAM = CAM ( T/g ABH = T/g ACH )
=> T/g ABM = T/g ACM (C.g.c)
- Ta có :
BM = CM ( T/g ABM = T/g ACM)
=> T/g MBC cân tại M

4 tháng 2 2018

a)  Xét    \(\Delta ABH\)và     \(\Delta ACH\)có:

        \(AB=AC\)(gt)

        \(\widehat{ABH}=\widehat{ACH}\)(gt)

       \(BH=CH\)(gt)

suy ra:     \(\Delta ABH=\Delta ACH\)(c.g.c)

13 tháng 2 2020

câu b là tpg của góc ABC ...... chứng minh góc ABM= góc ACM

21 tháng 4 2022

giúp mik vs

 

18 tháng 5 2016

A B C H M E D

Cô hướng dẫn nhé :)

a. \(\Delta ABH=\Delta ADH\) (Hai cạnh góc vuông)

b. Ta thấy góc CDE = góc HDA (đối đỉnh) \(\Rightarrow\) góc DEC = góc HAD (Cùng phụ với hai góc bên trên)

Lại do câu a có \(\Delta ABH=\Delta ADH\) nên góc DAH = góc HAB. Mà góc HAB = góc HCA. 

Vậy góc ECD = góc DCA

c. Xét tam giác ACM có CH vừa là đường cao, vừa là phân giác nên tam giác ACM cân tại C.

Chúc em học tốt ^^

18 tháng 5 2016

cô ơi sao góc DEC là góc vuông còn góc HAD là góc nhọn sao bằng nhau được ạ

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1

Bài 1: 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đó: ΔABD=ΔACE

b: ta có: ΔABD=ΔACE

nên AD=AE
hay ΔADE cân tại A

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

AE=AD

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

mà AE=AD

nên AH là đường trung trực của ED

26 tháng 2 2022

a, Xét tam giác ABM và tam giác ACM ta có 

AB = AC 

AM _ chung 

BM = CM 

Vậy tam giác ABM = tam giác ACM (c.c.c)

b, đề sai rồi 

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có

MB=MC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBHM=ΔCKM