Cho tam giác ABC có góc B lớn hơn góc C (GT).Kẻ Ah vuông góc với BC,H thuộc BC,gọi D là điểm nằm giữa A và H
a) Chứng minh BH<HC
b)Chứng minh DB<BC
c)Chứng minh CD<CA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔAHD vuông tại H
nên AH<AD
Vì góc ADH<90 độ
=>góc ADM>90 độ
=>AD<AM
=>AH<AD<AM
=>AD nằm giữa AH và AM
a: \(\widehat{B}>\widehat{C}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔBDC có HB<HC
mà HB là hình chiếu của BD trên BC
và HC là hình chiếu của CD trên BC
nên BD<CD
xét tam giác ABC có góc B lớn hơn góc C.
==> AB<AC (quan hệ giữa cạnh và góc đối diện trong 1 tamgiac)
Xét ΔABC ta có
AB<AC(cmt)
mà HC là hình chiếu của AC trên BC
HB là hình chiếu của AB trên BC
==> HB<HC
Xét ΔBDC ta có
HB<HC( c/m ở câu a)
mà HC là hình chiếu của CD trên BC
HB là hình chiếu của BD trên BC
===> BD<CD