K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

ban h cho minh di

12 tháng 7 2018

\(S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}\right)\)Ta có :

 \(S< 5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=5\left(1-\frac{1}{100}\right)< 5\)

\(S>5\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)=5\left(\frac{1}{2}-\frac{1}{101}\right)>2\)

\(\Rightarrow2< S< 5\)

15 tháng 4 2019

5/2.2 +5/3.3+5/4.4 +...+ 5/100.100   <   5/1.2+5/ 2.3+5/3.4+ ...+ 5/99.100

5/2.2 +5/3.3+5/4.4 +...+ 5/100.100   <   5 . ( 1/1.2 +1/2.3 +1/3.4 +...+1/99.100 )

5/2.2 +5/3.3+5/4.4 +...+ 5/100.100    <   5. (1/1-1/2+1/2-1/3+1/3-1/4 +..+ 1/99-1/100)

5/2.2 +5/3.3+5/4.4 +...+ 5/100.100    <   5. (1/1-1/100)

5/2.2 +5/3.3+5/4.4 +...+ 5/100.100    <   5. (100/100 -1/100)

5/2.2 +5/3.3+5/4.4 +...+ 5/100.100    <   5. 99/100

5/2.2 +5/3.3+5/4.4 +...+ 5/100.100    <   99/20 < 100/20

5/2.2 +5/3.3+5/4.4 +...+ 5/100.100    <   99/20 < 5

\(\Rightarrow\)S < 5

2 tháng 5 2017

2/

S = 2 + 22 + 23 +...+ 299

= (2+22+23) +...+ (297+298+299)

= 2(1+2+22)+...+297(1+2+22)

= 2.7 +...+ 297.7

= 7(2+...+297) chia hết cho 7

S = 2+22+23+...+299

= (2+22+23+24+25)+...+(295+296+297+298+299)

= 2(1+2+22+23+24)+...+295(1+2+22+23+24)

= 2.31+...+295.31

= 31(2+...+295) chia hết cho 31

3/

A = 1+5+52+....+5100 (1)

5A = 5+52+53+...+5101 (2)

Lấy (2) - (1) ta được

4A = 5101 - 1

A = \(\frac{5^{101}-1}{4}\)

2 tháng 5 2017

4/

Đặt A là tên của biểu thức trên

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

........

\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy...

5/

a, Gọi UCLN(n+1,2n+3) = d

Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d

           2n+3 chia hết cho d

=> 2n+2 - (2n+3) chia hết cho d

=> -1 chia hết cho d => d = {-1;1}

Vậy...

b, Gọi UCLN(2n+3,4n+8) = d

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d 

=> 4n+6 - (4n+8) chia hết cho d

=> -2 chia hết cho d => d = {1;-1;2;-2}

Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}

Vậy...

3 tháng 9 2018

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{2}{5}\)

3 tháng 9 2018

nhưng tại sao lại >1/2*3+1/3*4+1/4*5+...+1/9*10

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

21 tháng 4 2019

 Ta có:

 \(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(\frac{1}{5^2}< \frac{1}{4.5}\)

....

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}\)

                                                                      \(-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

                             => đpcm                                                             

21 tháng 4 2019

Thank bn Hoàng đạo thứ 7 nhé. Cho 3 k r nhé hihi