Tim GTLN của \(M=2009-\left|x-7\right|-\left(2y+4\right)^{2008}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=-\left|x-7\right|-\left(2y+4\right)^{2008}+2009\le2009\)
Dấu '=' xảy ra khi x=7 và y=-2
a) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
<=> \(\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)-\left(\frac{x-3}{2007}-1\right)-\left(\frac{x-4}{2006}-1\right)=0\)
<=> \(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
<=> \(\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
<=> x - 2010 = 0 Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
<=> x = 2010
a)
\(2009-\left|x-2009\right|=x\)
\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)
\(\Rightarrow x-2009\le0\)
\(\Rightarrow x\le2009\)
Vậy \(x\le2009\)
b)
Vì \(\left(2x+1\right)^{2008}\ge0\forall x\)
\(\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)
Mà theo đề bài :
\(\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
\(\Rightarrow\left(2x+1\right)^{2008}=0;\left(y-\dfrac{2}{5}\right)^{2008}=0;\left|x+y-z\right|=0\)
*) Với \(\left(2x+1\right)^{2008}=0\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\dfrac{-1}{2}\)
*) Với \(\left(y-\dfrac{2}{5}\right)^{2008}=0\)
\(\Rightarrow y-\dfrac{2}{5}=0\)
\(\Rightarrow y=\dfrac{2}{5}\)
*) Với \(\left|x+y-z\right|=0\)
\(\Rightarrow x+y-z=0\)
\(\Rightarrow\dfrac{-1}{2}+\dfrac{2}{5}-z=0\)
\(\Rightarrow\dfrac{-1}{10}-z=0\)
\(\Rightarrow z=\dfrac{-1}{10}\)
Vậy \(x=\dfrac{-1}{2};y=\dfrac{2}{5};z=\dfrac{-1}{10}\)
a, 2009 - \(\left|x-2009\right|\) = x
=> \(\left|x-2009\right|\) = 2009 - x
=> \(\left[{}\begin{matrix}x-2009=2009-x\\x-2009=-2009-x\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=4018\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2009\\x=0\end{matrix}\right.\)
Vậy x \(\in\)n { 2009 ; 0 }
a: =>|x-2009|=2009-x
=>x-2009<=0
=>x<=2009
b: =>2x-1=0 và y-2/5=0 và x+y-z=0
=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Mà \(\left\{{}\begin{matrix}4\left(x+y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}4\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\)
Ta có: \(M=\left(x+y\right)^{2017}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)
\(=\left(-1\right)^{2008}=1\)
Vậy M = 1
Ta có: \(\left\{{}\begin{matrix}\left(3x-33\right)^{2008}\ge0\\\left|y-7\right|^{2009}\ge0\end{matrix}\right.\Rightarrow\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\ge0\)
Mà \(\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-33\right)^{2008}=0\\\left|y-7\right|^{2009}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-33=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=7\end{matrix}\right.\)
Vậy \(x=11;y=7\)
A=/x-2008/+/2009-x/+/y-2010/+/x-2011/+2011
≥/x-2008+2009-x/+/y-2010/+/x-2011/+2011
= /y-2010/+/x-2011/+2012≥2012
Dau bang xay ra khi : \(\left\{{}\begin{matrix}y-2010=0\\x-2011=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}y=2010\\x=2011\end{matrix}\right.\)
Vay GTNN cua A=2012 khi \(\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)
Vì |x-7| \(\ge\)0
(2y+4)2008\(\ge\)0
nên M\(\le\)2009
Dấu ''='' xảy ra khi \(\hept{\begin{cases}x-7=0\\2y+4=0\end{cases}< =>\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)
Vậy Mmax=2009 khi x=7,y=-2
\(\hept{\begin{cases}\left|x-7\right|\ge0\\\left(2y+4\right)^{2008}\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-\left|x-7\right|\le0\\-\left(2y+4\right)^{2008}\le0\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left(2y+4\right)^{2008}\le0\)
\(\Rightarrow2009-\left|x-7\right|-\left(2y+4\right)^{2008}\le2009\)
Nên GTLN của M là 2009 đạt được khi \(\hept{\begin{cases}\left|x-7\right|=0\\\left(2y+4\right)^{2008}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)