Cho tam giác ABC có P=30cm,BC=10cm. Các đường trung tuyen BM,CN của tam giác giao nhau tại O.
a/ Chứng minh tứ giác BCMN là hình thang và tính chu vi của hình thang đó
b/Gọi PQ lần lượt là trung điểm của BO và CO. Chứng minh MN//PQ va MN=PQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
hay BCMN là hình thang
a) dùng đường trung bình của tam giác
b) Để BCMN là hình thang cân thì \(\widehat{A}=\widehat{B}\)
=> \(\Delta ABC\)cân tại A
Mình làm tắt, bạn tự trình bày đầy đủ nhé
a) dùng đường trung bình của tam giác
b) Để BCMN là hình thang cân thì ^A=^B
=> ΔABC cân tại A
a: Xét ΔABC có
\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)
Do đó: MN//BC
Xét tứ giác BNMC có MN//BC
nên BNMC là hình thang
mà \(\widehat{NBC}=\widehat{MCB}\)
nên BMNC là hình thang cân
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
Xét tứ giác BNMC có NM//BC
nên BNMC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BNMC là hình thang cân
a: Xét tứ giác BHCD có
O là trung điểm của BC
O là trung điểm của HD
Do đó: BHCD là hình bình hành