Chứng minh rằng tổng
S=1/2^2 -1/2^4 +1/2^6 - ...........+ 1/2^4n-2 -1/2^4n + ..........+ 1/2^2002 - 1/2^2004 nhỏ hơn 0,2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4S=\(\dfrac{4}{2^2}-\dfrac{4}{2^4}+\dfrac{4}{2^6}-...+\dfrac{4}{2^{4n-2}}-\dfrac{4}{2^{4n}}+...+\dfrac{4}{2^{2002}}-\dfrac{4}{2^{2004}}\)
4S=1-\(\dfrac{1}{2^2}+\dfrac{1}{2^4}-,...-\dfrac{1}{2^{2002}}\)
4S+S=1-\(\dfrac{1}{2^{2004}}\)
5S=\(\dfrac{2^{2004}-1}{2^{2004}}\)<1
\(\Rightarrow\)5S<1 hay S<\(\dfrac{1}{5}\)=0,2(đpcm)
\(S=\left(\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+..+\frac{1}{2^{2002}}\right)-\left(\frac{1}{2^4}+\frac{1}{2^8}+..+\frac{1}{2^{4n}}+...+\frac{1}{2^{2004}}\right)\)= A - B
Tính A:
\(2^4.A=2^2+\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+...+\frac{1}{2^{1998}}\)
=> 24.A - A = 15.A =
\(\left(2^2+\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+...+\frac{1}{2^{1998}}\right)\)- \(\left(\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+...+\frac{1}{2^{2002}}\right)\)
= 22 - \(\frac{1}{2^{2002}}\) => A = \(\frac{2^2}{15}-\frac{1}{15.2^{2002}}
Có S=\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)
=>\(\dfrac{1}{2^2}S=\dfrac{1}{2^2}\)\(\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
=> \(\dfrac{1}{2^2}\)S= \(\dfrac{1}{2^4}-\dfrac{1}{2^6}+\dfrac{1}{2^8}-...+\dfrac{1}{2^{4n}}-\dfrac{1}{2^{4n+2}}+...+\dfrac{1}{2^{2004}}-\dfrac{1}{2^{2006}}\)
+S =\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)
=> \(\dfrac{5}{4}\)S= \(\dfrac{1}{2^2}\)-\(\dfrac{1}{2^{2006}}\)
=> S= \(\dfrac{\left(\dfrac{1}{2^2}-\dfrac{1}{2^{2006}}\right)}{\dfrac{5}{2^2}}=\dfrac{\dfrac{1}{2^2}}{\dfrac{5}{2^2}}-\dfrac{\dfrac{1}{2^{2006}}}{\dfrac{5}{2^2}}=\dfrac{1}{5}-\dfrac{1}{2^{2004}.5}=0.2-\dfrac{1}{2^{2004}.5}\)
=> S <0,2
Vậy S <0,2(đpc/m)
Nếu 1/2^2*S=1/2^2 thì tính đc S luôn r cần gì làm nữa bạn
Cũng cảm ơn vì đã giúp nhé
=> 22.S = \(1-\frac{1}{2^2}+\frac{1}{2^4}-............+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}\)
=> 4S + S = \(1-\frac{1}{2^2}+\frac{1}{2^4}-......+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}+\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)
=> 5S = \(1-\frac{1}{2^{2004}}
Đặt \(A=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)
\(\Rightarrow2^2A=2^2.\left(\frac{1}{2^2}-\frac{1}{2^4}+...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\right)\)
\(\Rightarrow4A=1-\frac{1}{2^2}+\frac{1}{2^4}-...-\frac{1}{2^{4n-2}}+\frac{1}{2^{4n}}-...-\frac{1}{2^{2002}}\)
\(\Rightarrow4A+A=\left(1-\frac{1}{2^2}+\frac{1}{2^4}-...-\frac{1}{2^{4n-2}}+\frac{1}{2^{4n}}-...-\frac{1}{2^{2002}}\right)+\left(\frac{1}{2^2}-\frac{1}{2^4}+...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\right)\)
\(\Rightarrow5A=1-\frac{1}{2^{2004}}\)
Vì \(1-\frac{1}{2^{2004}}< 1.\)
\(\Rightarrow5A< 1\)
\(\Rightarrow A< \frac{1}{5}=0,2\)
\(\Rightarrow A< 0,2\left(đpcm\right).\)
Chúc bạn học tốt!