tam giác ABC có tia phân giác của góc BAC cắt cạnh BC ở D . Từ D kẻ đường thẳng song song với AB , đường này cắt AC ở E .
a/ CM : tam giác AED cân .
b/ Đường thẳng song song với BC vẽ từ E cắt cạnh AB ở F . CM : BF = AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có DE//AB
mà góc KAD =góc EAD(tia p/g góc A)
=> góc KAD=góc EAD (hai góc so le trong )
xét tam giác EAD có
góc EAD=góc EDA(hai góc ở đáy bằng nhau )
vậy tam giác EAD CÂN TẠI E
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
b: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>MF=ME
=>M là trung điểm của EF
c: AC-AB=AE+EC-AD+DB
=2BD
cho tam giác ABC ( AB khác AC) . tia phân giác Ax của góc A cắt BC ở D. từ D kẻ một đường thẳng song song với AB cắt AC tại F.từ D kẻ đường thẳng song song với AC cắt AB ở E.
a) CM AE=ED=DF=FA
b) từ trung điểm M của cạnh BC kẻ đường thẳng vuông góc với AC tại Pva cắt đường thẳng AB tại Q.CM EF song song với PQ.
c) CM BP=CQ
này đề bài bạn có sai k vậy sao có tận 2 cái điểm E lại ở 2 vị trí khác nhau vậy?
Cho tam giác ABC. Kẻ tia phân giác AD của Â( D thuộc BC). Từ D kẻ đường thẳng song song với AB, đường này cắt cạnh AC tại điểm E. Qua E ta kẻ đường thẳng song song với cạnh BC, đường thẳng này cắt cạnh AB tại điểm E.
là sao z
hik như đề sai