K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

a) Xét trên tử

Ta có :

1.5.6 + 2.10.12 + 4.20.24 + 9.45.54

= 1.5.6 + \(^{2^3}\). 1.5.6 + \(^{4^3}\).1.5.6 + \(^{9^3}\).1.5.6

= 1.5.6 ( 2^3 + 4^3 + 9^3 )

Xét mẫu

Ta có :

1.3.5 + 2.6.10 + 4.12.20 + 9.27.45

= 1.3.5 + 2^3 .1.3.5 + 4^3 . 1.3.5 + 9^3 .1.3.5

= 1.3.5 ( 2^3 + 4^3 + 9^3 )

Ta có 

A = \(\frac{1.5.6.\left(2^3+4^3+9^3\right)}{1.3.5.\left(2^3+4^3+9^3\right)}\)= 2

b) Ta có :

 k(k+1)(k+2)-(k-1)k(k+1) = k(k + 1) (k + 2 - k + 1 ) = k( k + 1 ) . 3 = 3k( k + 1 )

Ta có :

S = 1.2 + 2.3 + 3.4 + ... + n(n + 1 )

\(\Rightarrow\)3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1) . 3

3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]

3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)

3S = n(n + 1)(n + 2)

S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

12 tháng 4 2017

bang 2 nhé

28 tháng 9 2015

\(\frac{1\cdot5\cdot6+2\cdot10\cdot12+4\cdot20\cdot24+9\cdot45\cdot54}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20+9\cdot27\cdot45}=\frac{1\cdot5\cdot6\cdot\left(1+2+4+9\right)}{1\cdot3\cdot5\cdot\left(1+2+4+9\right)}=2\)

15 tháng 1 2018

\(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)

\(=\frac{1.5.6+2^3.1.5.6+4^3.1.5.6+9^3.1.5.6}{1.3.5+2^3.1.3.5+4^3.1.3.5+9^3.1.3.5}\)

\(=\frac{1.5.6\left(1+2^3+4^3+9^3\right)}{1.3.5\left(1+2^3+4^3+9^3\right)}=\frac{5.6}{3.5}=2\)

22 tháng 6 2018

\(A=\frac{1\cdot5\cdot6+2\cdot10\cdot12+4\cdot20\cdot24+9\cdot45\cdot54}{1\cdot3\cdot5+2\cdot6\cdot10+4\cdot12\cdot20+9\cdot27\cdot45}\)

\(A=\frac{1\cdot5\cdot6\cdot\left(1+2+4+9\right)}{1\cdot3\cdot5\cdot\left(1+2+4+9\right)}\)

\(A=\frac{1\cdot5\cdot6}{1\cdot3\cdot5}\)

\(A=2\)

\(A=\frac{3.24.2}{13}=\frac{144}{13}\)

17 tháng 3 2015

\(A=\frac{1.5.6+2^3.1.5.6+4^3.1.5.6+9^3.1.5.6}{1.3.5+2^3.1.3.5+4^3.1.3.5+9^3.1.3.5}=\frac{1.5.6.\left(1+2^3+4^3+9^3\right)}{1.3.5.\left(1+2^3+4^3+9^3\right)}=2\)

15 tháng 3 2016

LOZ.bạn ra bài khó quá mình giai ko được

30 tháng 11 2023

A=11.300+12.301+13.302+...+1101.400�=11.300+12.301+13.302+...+1101.400

A=1299.(11−1300+12−1301+13−13012+...+1101−1400)�=1299.(11−1300+12−1301+13−13012+...+1101−1400)

A=1299.(11−1400)�=1299.(11−1400)

A=1299.399400�=1299.399400

A=399119600�=399119600

B=11.102+12.103+13.104+...+1299.400�=11.102+12.103+13.104+...+1299.400

B=1101.(11−1102+12−1103+....+1299−1400)�=1101.(11−1102+12−1103+....+1299−1400)

B=1101.(11−1400)�=1101.(11−1400)

B=1101.399400�=1101.399400

B=39940400�=39940400

⇒AB=39911960039940400=101299

3 tháng 4 2017

\(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)=\(\frac{1.5.6+\left(1.5.6\right)2+\left(1.5.6\right)4+\left(1.5.6\right)9}{1.3.5+\left(1.3.5\right)2+\left(1.3.5\right)4+\left(1.3.5\right)9}\)

=\(\frac{\left(1.5.6\right)\left(1+2+4+9\right)}{\left(1.3.5\right)+\left(1+2+4+9\right)}=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)

19 tháng 7 2015

\(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}=\frac{1.5.6+\left(1.5.6\right)2+\left(1.5.6\right)4+\left(1.5.6\right)9}{1.3.5+\left(1.3.5\right)2+\left(1.3.5\right)4+\left(1.3.5\right)9}=\)

\(\frac{\left(1.5.6\right)\left(1+2+4+9\right)}{\left(1.3.5\right)\left(1+2+4+9\right)}=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)