Cho hai hàm số :
\(f\left(x\right)=\dfrac{a^x+a^{-x}}{2};g\left(x\right)=\dfrac{a^x-a^{-x}}{2}\)
a) Chứng minh rằng \(f\left(x\right)\) là hàm số chẵn, \(g\left(x\right)\) là hàm số lẻ
b) Tìm giá trị bé nhất của \(f\left(x\right)\) trên tập xác định
a) Ta có tập xác định của cả hai hàm số \(f\left(x\right),g\left(x\right)\) đểu là \(\mathbb{R}\)
Mặt khác:
\(f\left(-x\right)=\dfrac{a^{-x}+a^{-x}}{2}=f\left(x\right);g\left(x\right)=\dfrac{a^{-x}-a^x}{2}=-g\left(x\right)\)
Vậy \(f\left(x\right)\) là hàm số chẵn, \(g\left(x\right)\) làm hàm số lẻ
b) Ta có :
\(f\left(x\right)=\dfrac{a^x+a^{-x}}{2}\ge\sqrt{a^xa^{-x}}=1,\forall x\in\mathbb{R}\)
và :
\(f\left(0\right)=\dfrac{a^0+a^0}{2}=1\)
Vậy :
\(minf\left(x\right)=f\left(0\right)=1\)