K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

Ta có: 

\(\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+a+b^2+b}{ab}\)

Vì \(\frac{a+1}{b}+\frac{b+1}{a}\) là số tự nhiên 

=> \(\frac{a^2+a+b^2+b}{ab}\) là số tự nhiên 

=> \(a^2+a+b^2+b⋮ab\)

Lại có: d = ( a; b ) => \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow ab⋮d^2;a^2⋮d^2;b^2⋮d^2\)

=> \(a^2+a+b^2+b⋮d^2\) và \(a^2+b^2⋮d^2\)

=> \(a+b⋮d^2\)

=> \(a+b\ge d^2\)

28 tháng 2 2021

trọn hết giây cuối cùng, hưởng thụ trước khi chết

28 tháng 2 2021

mik sẽ vặn ngược kim đồng hồ trở lại trc công nguyên

trả lời đi với

19 tháng 4 2018
có biết đâu mà trả lời
24 tháng 1 2020

Ta có \(\frac{a+1}{b}+\frac{b+1}{a}=\frac{a\left(a+1\right)}{ab}+\frac{b\left(b+1\right)}{ab}=\frac{a\left(a+1\right)+b\left(b+1\right)}{ab}=\frac{a^2+a+b^2+b}{ab}\) là số tự nhiên nên

\(a^2+b^2+a+b⋮ab\)

Vì \(UCLN\left(a;b\right)=d\Rightarrow a⋮d;b⋮d\)

\(\Rightarrow ab⋮d^2;a^2⋮d^2;b^2⋮d^2\)

\(\Rightarrow\left(a^2+b^2\right)⋮d^2\)

Do đó  \(a^2+b^2+a+b⋮d^2\)

\(\left(a^2+b^2\right)⋮d^2\)

\(\Rightarrow a+b⋮d^2\)

\(\Rightarrow a+b\ge d^2\)

Học tốt

4 tháng 9 2019

Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath

4 tháng 9 2019

Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath

17 tháng 8 2016

Đặt \(A=\frac{a+1}{b}+\frac{b+1}{a}=\left(\frac{a+1}{b}+1\right)+\left(\frac{b+1}{a}+1\right)-2=\left(a+b+1\right)\left(\frac{1}{a}+\frac{1}{b}\right)-2\)

Vì A có giá trị là một số tự nhiên nên \(\frac{1}{a}+\frac{1}{b}\) phải có giá trị là số tự nhiên hay

\(\frac{a+b}{ab}\) là một số tự nhiên \(\Rightarrow\left(a+b\right)⋮ab\)

Vì d là ƯCLN(a,b) nên \(a=dm,b=dn\) \(\Rightarrow\begin{cases}a+b=d\left(m+n\right)\\ab=d^2mn\end{cases}\) (m,n thuộc N)

\(\Rightarrow\frac{a+b}{ab}=\frac{d\left(m+n\right)}{d^2mn}=\frac{m+n}{dmn}\)

=> (m+n) chia hết cho dmn \(\Rightarrow m+n\ge d\)

\(\Rightarrow d\left(m+n\right)\ge d^2\) hay \(a+b\ge d^2\)

 

 

3 tháng 6 2021

Đặt \(X=\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+b^2+a+b}{ab}\)

Vì X là số tự nhiên => \(a^2+b^2+a+b⋮ab\)

Vì d=UCLN(a,b) => \(a⋮d\) và \(b⋮d\)=> \(ab⋮d^2\)

=> \(a^2+b^2+a+b⋮d^2\)

Lại vì  \(a⋮d\) và  \(b⋮d\) => \(a^2⋮d^2\) và \(b^2⋮d^2\) => \(a^2+b^2⋮d^2\)

=> \(a+b⋮d^2\)

=> \(a+b\ge d^2\) (đpcm)