K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bất đẳng thức đã cho tương đương với:
(b+c)^2−a(b+c)+a^2/3−3bc>0
⇔(b+ca/2)^2+(a^3−36)/12a>0
BĐT này luôn đúng do a^3>36>0
Vậy ta có đpcm

30 tháng 4 2019

ban co the giai ky ra cho minh dc ko thanks

13 tháng 5 2019

>=8 nha

13 tháng 5 2019

Tại sao lại bằng 8

10 tháng 1 2016

\(a,\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}\)

\(\text{Suy ra: }\frac{a+b}{c+a}=\frac{a}{c}\Rightarrow c.\left(a+b\right)=a.\left(c+a\right)\Rightarrow ac+bc=ac+a^2\)

=>a2=bc

b)Viết đề rõ lại giúp

NV
3 tháng 1 2020

\(a^3+a^3+1\ge3a^2\Rightarrow a^3+\frac{1}{2}\ge\frac{3}{2}a^2\)

\(\Rightarrow VT+\frac{3}{2}\ge\frac{3}{2}a^2+\frac{3}{2}b^2+\frac{3}{2}c^2+ab+bc+ca\)

\(\Rightarrow VT+\frac{3}{2}\ge a^2+b^2+c^2+\frac{1}{2}\left(a+b+c\right)^2\)

\(\Rightarrow VT+\frac{3}{2}\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{2}\left(a+b+c\right)^2=\frac{15}{2}\)

\(\Rightarrow VT\ge\frac{15}{2}-\frac{3}{2}=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

30 tháng 1 2020

Sau khi đưa BĐT về dạng thuần nhất ta có:

\(VT-VP=\frac{1}{18} \sum\limits_{cyc} (7a+7b+c)(a-b)^2 \geq 0\)

10 tháng 1 2016

minh thay bai nay kho qua

6 tháng 3 2016

https://www.facebook.com/OnThiDaiHocKhoiA/posts/508217699295984

6 tháng 3 2016

có a bn

1 tháng 5 2016

Số học sinh nữ là:

         40x3/8 = 15(học sinh)

Số học sinh nam là:

           40-15=25(học sinh)