K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2015

trong 2003 số đã cho chỉ nhận nhiều nhất 4 giá trị khác nhau

Thật vậy: Giả sử chúng có nhiều hơn 4 giá trị khác nhau, gọi a1;a2;a3;a4;a5; là 5 số khác nhau,Giả sử

a1<a2<a3<a4<a5 khi đó với 4 số bất kì a1;a2;a3;a4 ta có a1a2\(\ne\) a3a4;a1a3\(\ne\)a2a4;a1a4\(\ne\) a2a3 tức là 4 số a1;a2;a3;a4 không thể lập nên 1 tỉ lệ thức

=>trái giả thiết của đề bài

Mặt khác 2003=4.500+3,Vì vậy phải có 599+1=501 số bằng nhau

16 tháng 11 2015

trong 2003 số đã cho chỉ nhận 4 giá trị khác nhau

Giả sử chúng có > 4 giá trị khác nhau, thì gọi x1;x2;x3;x4;x5; là 5 số khác nhau

Giả sử x1<x2<x3<x4<x5 khi đó với 4 số bất kì x1;x2;x3;x4; ta có a1a2 không bằng x3x4;x1x3 và không bàng x2x4;x1x4 không bằng a2a3 nghĩa là 4 số x1;x2;x3;x4  không có cách nào để lập nên 1 tỉ lệ thức

=>ngược giả thiết của đề bài

ở một hướng khác =4.500+3,Vì vậy phải có 599+1=501 số bằng nhau

 

2 tháng 8 2015

Ta chứng minh trong 2005 số tự nhiên đã cho chỉ nhận nhiều nhất 4 giá trị khác nhau. Thực vậy, giả sử trong các số đã cho có nhiều hơn 4 số khác nhau, giả sử a1, a2, a3, a4, a5 là 5 số khác nhau.
Không mất tính tổng quát

Mình chỉ nói sơ thôi mong bạn hiểu cho mình

13 tháng 9 2016

 a1/a2 = b1/b2 = c1/c2 = k

a1=k.a2, b1=k.b2, c1=k.c2

Biểu thức trở thành

√(k.a2 + k.b2 + k.c2).(a2 + b2 + c2)= √k.a2.a2 + √k.b2.b2 + √k.c2.c2

√k.(a2+b2+c2)2 = a2. √k + b2. √k + c2. √k

(a2+b2+c2). √k = (a2+b2+c2). √k (hiển nhiên đúng)

Suy ra điều phải chứng minh

28 tháng 2 2020

định lí bitago