Cho tam giác nhọn ABC (AB<AC) nội tiếp (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc MB tại D, AE vuông góc MC tại E. DE cắt BC tại H.
a. Chứng minh A, H, E củng thuộc 1 đường tròn => DE luôn đi qua 1 điểm cố định.
b. Xác định vị trí của M để \(\frac{MB}{AD}.\frac{MC}{AE}\)đạt giá trị nhỏ nhất