Cho điểm M nằm ngoài (O;R) sao cho OM=2R. Kẻ 2 tiếp tuyến MA,MB với (O;R), ( A,B là tiếp điểm). Đoạn thẳng OM cắt (O;R) tại P và cắt AB tại H. Tia AO cắt (O;R) tại D và cắt MB tại K. Nối PK cắt BD tại G
a) Chứng minh MO song song với BD
b) Chứng minh OG vuông góc với BD
c) Tử trung điểm I của AH vẽ đường thẳng vuông góc với AO cắ đường tròn tại Q và J. Chứng minh MO là tiếp tuyến của ( A;AQ)
a) Xét (O) có
MA là tiếp tuyến có A là tiếp điểm(gt)
MB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: MA=MB(Tính chất hai tiếp tuyến cắt nhau)
Ta có: OA=OB(=R)
nên O nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MA=MB(cmt)
nên M nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
hay OM\(\perp\)AB
Xét (O) có
A\(\in\)(O)(gt)
D\(\in\)(O)(gt)
Do đó: OA=OD(=R)
mà A,O,D thẳng hàng(gt)
nên O là trung điểm của AD
Xét (O) có
O là trung điểm của AD(cmt)
O là tâm của đường tròn(O)(gt)
Do đó: AD là đường kính của (O)
Xét (O) có
ΔADB nội tiếp đường tròn(A,D,B\(\in\)(O))
AD là đường kính của (O)(cmt)
Do đó: ΔADB vuông tại B(Định lí)
hay DB\(\perp\)AB
Ta có: DB\(\perp\)AB(cmt)
OM\(\perp\)AB(cmt)
Do đó: MO//BD(Định lí 1 từ vuông góc tới song song)