K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

hình bạn tự vẽ nhé!!

a, Xét tam giác ABD và tam giác ACE

có góc ADB = góc AEC (=90độ)

AB =AC (do tam giác ABC cân tại A)

góc A chung 

=> 2 tam giác ABD=ACE(ch-gn)

b, xét tam giác BDC và tam giác CEB

có góc BDC = góc CEB (=90độ)

BC là cạnh chung

góc ABC = góc ACB (do tam giác ABC cân tại A)

=>2 tam giác BDC = CEB (ch-gn)

=> góc DBC = góc ECB(2 góc tương ứng)

Xét tam giác BHC có góc DBC = góc ECB (cmt)

=> tam giác BHC cân tại H

c, Xét tam giác DHC có HDC = 90 độ

=>  HC > HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

mà HC = HB (vì tam giác BHC cân tại H)

Từ đó => HB>HD

d, mình chưa học!!sorry!!

chúc bạn hk tốt!!

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H1. Chứng minh tam giác ABE và tam giác ACF đồng dạngXét \(\Delta ABE\) và \(\Delta ACF\) :\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )\(\widehat{A}\) chung\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)Xét tam giác AEF và tam giác...
Đọc tiếp

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H

1. Chứng minh tam giác ABE và tam giác ACF đồng dạng

Xét \(\Delta ABE\) và \(\Delta ACF\) :

\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)

Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)

Xét tam giác AEF và tam giác ABC:

\(\widehat{A}\) chung

\(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (cmt )

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) ( hai góc t/ứ)

3.Vẽ DM vuông gosc với AC tại M . Gọi K là giao điểm của CH và DM . Chứng minh \(\dfrac{BH}{EH}=\dfrac{DK}{MK}\) và \(AH.AD+CH.CF=\dfrac{CD^4}{CM^2}\)

Bài 2 : Cho ba số \(x,y,z\) khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính giá trị của biểu thức \(P=\dfrac{2017}{3}xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

 

3
NV
22 tháng 4 2021

\(BE||DM\) (cùng vuông góc AC)

Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)

\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)

Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)

Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)

\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)

Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)

\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)

(1); (2) suy ra đpcm

NV
22 tháng 4 2021

undefined

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC
góc BAD chung

Do đó: ΔABD=ΔACE

b: SỬa đề: ΔHDE cân tại H

Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Ta có: ΔEBC vuông tại E

mà EH là đường trung tuyến

nên EH=BC/2(1)

Ta có: ΔDBC vuông tại D

mà DH là đường trung tuyến

nên DH=BC/2(2)

Từ (1) và (2) suy ra HD=HE

hay ΔHDE cân tại H

c: Xét ΔBDC có

H là trung điểm của BC

HM//BD

Do đó: M là trung điểm của CD

8 tháng 1 2020

Tự vẽ hình

1, Xét △AED có: AE = AD (gt) => △AED cân tại A => AED = (180o - EAD) : 2

Vì △ABC cân tại A (gt)  => ABC = (180o - BAC) : 2

=> AED = ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> DE // BC (dhnb)

2, Vì △ABC cân tại A (gt) => ABC = ACB và AB = AC

Ta có: AB = AE + EB   ;  AC = AD + DC

Mà AB = AC (cmt)  ;  AE = AD (gt)

=> EB = DC

Xét △BDC và △CEB

Có: DC = EB (cmt)

    BCD = CBE (cmt)

   BC là cạnh chung

=> △BDC = △CEB (c.g.c)

=> BDC = CEB (2 góc tương ứng)

Mà BDC = 90o

=> CEB = 90o

=> EC ⊥ AB 

30 tháng 12 2017

Hình bạn tự vẽ nha!

Ta có:

AH_|_BC(AH là đường cao tam giác ABC)

DK_|_BC(DK là đường trung trực của BC)

=>AH//DK(t/c đường thẳng song song)

=>góc AED=góc EDK(so le trong) (1)

=>góc BEH=góc EDK( 2 góc đồng vị) (2)

Từ (1),(2) suy ra:

góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)

Mặt khác:

Xét tam giác BKD và tam giác DKC,có:

DK cạnh chung

BK=KC( K là trung điểm của BC)

góc BKD=góc DKC=1 vuông

=> tam giác BKD=tam giác DKC(c.g.c)

=>BD=DC

=>tam giác BDC cân tại D 

Nên góc BDK=góc CDK(t/c tam giác cân) (3)

Lại do: AH//DK

=>góc CDK=góc DAH( 2 góc đồng vị) (4)

Từ (3),(4)=>góc BDK=góc DAH

Mà góc AED=góc BDK( so le trong)

E là giao điểm của BD và AH(gt)

Nên E nằm giữa BD và AH

=>góc DAE=góc DAH=góc AED

=>tam giác ADE cân tại D ( đpcm)