Cho tam giác DEF vuông tại D có DE = 3cm ;DF=4cm .Gọi Q là trung điểm của EF.Qua Q lần lượt kẻ các đường thẳng vuông góc với DE và DF tại I và K a,Tính độ dài đoạn thẳng DQ. b, Chứng minh tứ giác DIQK là hình chữ nhật. c, Lấy điểm H đối xứng với Q qua I. Chứng minh tứ giác QEHD là hình thoi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(DE^2+DF^2=EF^2\)
\(\Leftrightarrow DF^2=5^2-3^2=16\)
hay DE=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DK là đường cao ứng với cạnh huyền EF, ta được:
\(DK\cdot FE=DE\cdot DF\)
\(\Leftrightarrow DK\cdot5=3\cdot4=12\)
hay DK=2,4(cm)
Áp dụng định lí Pytago vào ΔDKE vuông tại K, ta được:
\(DE^2=DK^2+EK^2\)
\(\Leftrightarrow EK^2=3^2-2.4^2=3.24\)
hay EK=1,8(cm)
Ta có: EK+FK=EF(K nằm giữa E và F)
nên FK=5-1,8=3,2(cm)
Áp dụng hệ thức lượng:
\(DE^2=EK.EF\Rightarrow EK=\dfrac{DE^2}{EF}=1,8\left(cm\right)\)
\(KF=EF-EK=3,2\left(cm\right)\)
\(DK^2=EK.KF\Rightarrow DK=\sqrt{EK.KF}=2,4\left(cm\right)\)
Áp dụng tslg trong tam giác DEF vuông tại D:
\(tanE=\dfrac{DF}{DE}=\dfrac{4}{3}\Rightarrow\widehat{E}\approx53^0\)
\(EF=\sqrt{3^2+4^2}=5\left(cm\right)\)
DI=3*4/5=2,4cm
Vì DM là trung tuyến ứng với cạnh huyền EF nên \(DM=\dfrac{1}{2}EF=\dfrac{5}{2}=2,5\left(cm\right)\)
ta thấy 3x3+4x4=5x5 nên nó là tam giác vuông
diện tích là S=1/2x3x4=6(cm2)
chúc bạn học tốt
HYC-23/1/2022
a: EF=căn DE^2+DF^2=6cm
b: Xét ΔEDF vuông tại D có sin E=DF/EF=căn 3/2
=>góc E=60 độ
ΔEDF vuông tại D có DI là trung tuyến
nên DI=IE=IF
Xét ΔIDE có ID=IE và góc E=60 độ
nên ΔIDE đều
a) \(EF=\sqrt{3^2+4^2}=5\)(cm)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)
b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)
c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
a: DQ=2,5cm