K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC và AO là phân giác của góc BAC

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔBOA vuông tại B có \(cosBOA=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BOA}=60^0\)

Xét ΔBOA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

=>\(OH\cdot2R=R^2\)

=>\(OH=\dfrac{R^2}{2R}=\dfrac{R}{2}\)

b: Ta có: \(\widehat{ABM}+\widehat{OBM}=\widehat{OBA}=90^0\)

\(\widehat{HBM}+\widehat{OMB}=90^0\)(ΔHMB vuông tại H)

mà \(\widehat{OBM}=\widehat{OMB}\)

nên \(\widehat{ABM}=\widehat{HBM}\)

=>BM là phân giác của góc ABH

Xét ΔABC có

BM,AM là các đường phân giác

BM cắt AM tại M

Do đó: M là tâm đường tròn nội tiếp ΔABC

a: Gọi H là trung điểm của OA

Xét (O) có

OH là một phần đường kính

BC là dây

OH⊥BC tại H

Do đó: H là trung điểm của BC

Xét tứ giác ABOC có 

H là trung điểm của đường chéo AO

H là trung điểm của đường chéo BC

Do đó: ABOC là hình bình hành

mà OB=OC

nên ABOC là hình thoi

19 tháng 12 2021

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

24 tháng 3 2022

$a\big)$

Ta có $\widehat{BAC}=90^o$ 

$\to \Delta ABC$ vuông tại $A$

Pytago: $AC^2=BC^2-AB^2=4R^2-R^2=3R^2$

$\to AC=R\sqrt{3}$

$b\big)$

Ta có $\sin{\widehat{ABC}}=\frac{AC}{BC}=\frac{R\sqrt{3}}{2R}=\frac{\sqrt{3}}{2}$

$\to \widehat{ABC}=60^o$

$\to \widehat{AOC}=2\widehat{ABC}=120^o$

Độ dài $\mathop{AC}\limits^{\displaystyle\frown}=\frac{\pi.R.120}{180}\approx 2,09R$

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC và AO là phân giác của góc BAC

mà OB=OC

nên OA là trung trực của BC 

Xét ΔOBA vuông tại B có cos BOK=OB/OA=1/2

nên góc BOK=60 độ

mà OB=OK

nên ΔOKB đều

b: \(AB=AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

góc DOC=180-120=60 độ

=>góc EOC=30 độ

Xét ΔEOC vuông tại C có tan EOC=EC/CO

=>EC/R=tan 30

=>EC=căn 3/3*R

=>\(AE=R\sqrt{3}+R\cdot\dfrac{\sqrt{3}}{3}=\dfrac{4}{3}R\cdot\sqrt{3}\)