K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

Vì góc ngoài đỉnh C bằng 120 độ nên \(\widehat{A}+\widehat{B}=120^0\)

Mà \(\widehat{A}-\widehat{B}=60^0\Rightarrow\left\{{}\begin{matrix}\widehat{A}=\left(120^0+60^0\right):2=90^0\\\widehat{B}=120^0-90^0=30^0\end{matrix}\right.\)

\(\Rightarrow\widehat{C}=180^0-90^0-30^0=60^0\)

16 tháng 10 2021

Cảm ơn bn nha ! :33

 

13 tháng 2 2022

đầu bài lúc vẽ hình đâu có điểm D đâu, sao tự nhiên lúc hỏi lòi đâu zậy ạ? Bạn xem xem có sai đầu bài ko?

a: góc BAC=180-120=60 độ

góc ABE=70/2=35 độ

góc AEB=180-60-35=85 độ

b: góc ABE<góc BAE<góc AEB

=>AE<BE<AB

c: góc ECB=180-70-60=50 độ

góc BEC=180-85=95 độ

Vì góc EBC<góc ECB<góc BEC

nên EC<EB<BC

24 tháng 5 2018

Trên tia AE lấy AD = AB \(\Rightarrow\)DE = AC

\(\Delta ABD\)cân có \(\widehat{BAD}=60^O\)nên là tam giác đều, suy ra AD = DB

\(\Delta DBE=\Delta ABC\)( c.g.c ) \(\Rightarrow\)\(\widehat{B_1}=\widehat{B_2}\)và BE = BC.

Ta lại có : \(\widehat{B_1}+\widehat{B_3}=60^o\)nên \(\widehat{B_2}+\widehat{B_3}=60^o\)

\(\Delta BCE\)cân ở B có \(\widehat{CBE}=60^o\)nên là tam giác đều

24 tháng 5 2018

A B C E D 1 3 2

AH
Akai Haruma
Giáo viên
12 tháng 4 2021

Lời giải:
Ta nhớ lại công thức, trong tam giác $ABC$ có $AB=c, BC=a, CA=b$ thì:

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$.

Ứng vào bài toán, với $\sin A=\sin 120=\frac{\sqrt{3}}{2}$ và $a=BC=6$ thì:

$R=\frac{a}{2\sin A}=\frac{6}{2.\frac{\sqrt{3}}{2}}=2\sqrt{3}$