K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

Gọi O là giao của EF và AH, K là giao AM và EF

Vì \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\) nên AEHF là hcn

Do đó \(OE=OF=OH=OA\)

\(\Rightarrow\Delta AOF\) cân tại O \(\Rightarrow\widehat{AFO}=\widehat{FAO}\left(1\right)\)

Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=BM=CM=\dfrac{1}{2}BC\)

\(\Rightarrow\Delta AMC\) cân tại M \(\Rightarrow\widehat{MCA}=\widehat{MAC}\left(2\right)\)

Vì tam giác AHC vuông tại H nên \(\widehat{MCA}+\widehat{FAO}=90^0\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{MAC}+\widehat{AFO}=90^0\)

Mà \(\widehat{AFO}+\widehat{MAC}+\widehat{AKF}=180^0\Rightarrow\widehat{AKF}=90^0\)

Vậy AM vuông góc EF

6 tháng 9 2023

 Gọi K là hình chiếu của M lên AC. Xét tam giác MBH vuông tại H và MCK vuông tại K, ta có:

\(MB=MC\) (M là trung điểm BC); \(\widehat{B}=\widehat{C}\) (tam giác ABC cân tại A)

 \(\Rightarrow\Delta MBH=\Delta MCK\left(ch-gn\right)\)  \(\Rightarrow MH=MK\)

 Ta thấy MK chính là khoảng cách từ AC đến M, đồng thời MK bằng MH là bán kính của đường tròn (M; MH) nên AC tiếp xúc với (M) (đpcm)

30 tháng 12 2021

mình cần gấp trong 20 phút

 

30 tháng 12 2021

a, xét tứ giác ADME có:

góc DAC = góc MDA=góc MEA=90\(^o\)

=> ADME là hình chữ nhật

b, DE=AM=5cm

c, xét tứ giác AMBH có:

BA vuông góc HM( MDA=90\(^o\))

=> AMBH là hình thoi

xét tam giác HMK có đường t/b DK(DM=DH,EK=EM)

  =>DE=\(\dfrac{1}{2}HK\)

\(\Leftrightarrow DE=HA=AK\)

 => A là trung điểm HK(HA=HK)

12 tháng 1 2021

dick and fuck