K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

gọi I, K là trung điểm của AB, Ac. cm cho AKDI là hình bình hành. ta có tam giác EID=KDF=AEF(c.g.c)=>EF=ED=DF=> tam giác DEF đều

29 tháng 12 2019

Bạn tự vẽ hình nhé !

Xét \(\Delta AMB\)và \(\Delta ECM\)có: 

\(MA=ME\left(gt\right)\)

\(MB=MC\)( vì M là trung điểm BC )

\(\widehat{BMA}=\widehat{EMC}\)( 2 góc đối đỉnh )

\(\Rightarrow\Delta AMB=\Delta ECM\left(c.g.c\right)\)

Vì \(\Delta AMB=\Delta ECM\left(cmt\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{MEC}\)( 2 góc tưởng ứng )

Mà 2 góc này ở vị trí so le trong 

\(\Rightarrow AB//CE\)

\(\text{a) xét tam giác AMB và tam giác EMC}\)

\(\text{có : MB=MC( M là trung điểm của BC)}\)

\(\text{góc AMB=góc EMC( đ đ)}\)

\(\text{AM=EM(gt)}\)

=> tam giác AMB=tam giác EMC(c-g-c)

\(\text{b) xét tam giác AMB và tam giác CME}\)

\(\text{có: AM=EM(gt)}\)

\(\text{góc AMB=góc CME (đ đ)}\)

\(\text{MB=MC(M là trung điểm của BC)}\)

=> tam giác AMB=tam giác CME(c-g-c)

=> góc CAM= góc MEC ( 2 góc tương ứng)

\(\text{mà 2 góc này ở vị trí so le trong}\)

=> AC=CE ( 2 cạnh tương ứng)

18 tháng 8 2019

Gọi I là trung điểm của AB
=> EI song song MB
=> ^AEI = ^AMB = 60 độ
Do đó ta sẽ chứng minh : ΔEID = ΔEAF 
thì khi đó : ^AEI = ^FED = 60 độ
Thật vậy : EI = 1/2 MB = AE,ID = 1/2 AC = AF
Lại có : ^EAF = 360 − 60.2 − ^BAC = 240 − ^BAC
             ^EID = 360 − 120 − ^BID = 240 − ^BAC
Do đó : ΔEID = ΔEAF (c.g.c)
Tương tự thì : ^EFD=60 độ 
=> đpcm

18 tháng 8 2019

Bạn giải thích rõ hơn chỗ chứng minh góc EID với góc EAF bằng nhau được không

30 tháng 12 2015

tick rồi mk giải chi tiết cho